Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acute myeloid leukemia : Identification of the genetic alteration responsible for uncontrolled cellular proliferation

20.12.2005


Blood taken from a normal mouse The blue coloring is characteristic of blood cells called blasts, which are proliferating. Blasts are in a small minority. © F. Moreau-Gachelin/Institut Curie


Blood taken from a leukemic mouse In blood taken from a leukemic mouse, the proliferating cells are much more numerous, indicating the presence of leukemic cells. © F. Moreau-Gachelin/Institut Curie


At the Institut Curie, an Inserm team has just identified the molecular mechanism long suspected to account for the formation of malignant cells in the most frequent leukemia – acute myeloid leukemia. For a cell to become leukemic, it must not only proliferate but also no longer become specialized. Mutations in its gene confer autonomous activity on the Kit receptor, thereby allowing cells to proliferate in the absence any external signal.This study was published in the 12 December 2005 issue of Cancer Cell.

Blood cells are produced in the bone marrow from stem cells. In response to growth factors, stem cells differentiate into precursor cells of three blood lines: red blood cells (also called erythrocytes), white blood cells (lymphocytes, macrophages…) and platelets. The cells are only released into the blood when they reach maturity.

Leukemias are malignant blood diseases characterized by the uncontrolled proliferation of blood cells. Lymphoid leukemias, which affect lymphocytes, are distinct from myeloid leukemias, which affect the precursors of all the other blood cell lines. The acute nature of leukemia is reflected in a complete absence of mature cells and in the presence in the bone marrow of numerous cells blocked at an early stage of their maturation.



In France, about 5 000 people are diagnosed with acute leukemia each year. The prognosis varies greatly from one type of leukemia to another. Acute myeloid leukemia accounts for 70% of acute leukemias, without regard to age. Its frequency peaks around 60 years of age. Erythroleukemia(1) is a type of myeloid leukemia.

A two-step mechanism

The molecular mechanisms underlying leukemia are legion and rare exceptions apart there is no single cause. These mechanisms are multi-stage. Murine cancer models used in research, like human tumors, are the result of accumulated genetic anomalies that enable cells to escape the control mechanisms involved in cell differentiation, growth and death by apoptosis.

In the case of erythroleukemia, researchers suspect the existence of a so-called “two-hit” model, although no verification has yet been forthcoming. Erythroleukemia is the consequence of a collaboration between two types of mutations, one that confers a proliferative advantage and one that blocks differentiation.

Uncontrolled proliferation results from mutation of a receptor

Françoise Moreau-Gachelin(2) and her Inserm team at the Institut Curie have now found evidence for this two-step mechanism and have shed light on how it works. They have worked on mice carrying a mutant gene that encodes the transcription factor(3) spi-1/PU.1, whose overexpression is involved in the onset of murine erythroleukemia, which therefore constitutes a good model for the study of human erythroleukemia.

Murine leukemia is characterized by a first event, which blocks the differentiation of precursor cells of the erythrocyte line, and a second event, which induces uncontrolled proliferation of the cells. The mechanism underlying the first event is known to be overexpression of the transcription factor spi-1/PU.1. The mechanism responsible for the second event was until now unknown.

By investigating the sequence of the gene coding for the Kit receptor, Françoise Moreau-Gachelin’s team discovered that this gene was mutated in 86% of the tumors studied.

Acting as a sort of switch, the Kit receptor relays information to the inside of the cell by activating its signaling pathways following receipt of a message from the outside. Françoise Moreau-Gachelin and her colleagues had shown before that some signaling pathways acting downstream of the receptors are “on” in leukemic cells and activate the proliferation of cells in the absence of an order from outside. They have now shown that the mutant Kit receptor is responsible for this uncontrolled activation.

The two-hit model has been validated: for a healthy cell to become malignant, the spi-1/PU.1 gene must be abnormally expressed and the Kit gene must be mutated. Mutation of the Kit gene is therefore a major event responsible for the transformation erythrocyte precursors into malignant cells during acute myeloid leukemia. It is vital to identify all the players in oncogenesis if we are to design new and more effective treatments for the fight against acute myeloid leukemia.

Notes

(1) Erythroleukemia affects red blood cells, also called erythrocytes.

(2) “Leukemogenesis and transcription factor Spi” team in Inserm U 528 “Signal transduction and oncogenesis” headed by Dr Olivier Delattre.

(3) A transcription factor is a protein which controls the expression of a gene.

Catherine Goupillon | alfa
Further information:
http://www.cancercell.org/
http://www.curie.fr

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>