Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Acute myeloid leukemia : Identification of the genetic alteration responsible for uncontrolled cellular proliferation


Blood taken from a normal mouse The blue coloring is characteristic of blood cells called blasts, which are proliferating. Blasts are in a small minority. © F. Moreau-Gachelin/Institut Curie

Blood taken from a leukemic mouse In blood taken from a leukemic mouse, the proliferating cells are much more numerous, indicating the presence of leukemic cells. © F. Moreau-Gachelin/Institut Curie

At the Institut Curie, an Inserm team has just identified the molecular mechanism long suspected to account for the formation of malignant cells in the most frequent leukemia – acute myeloid leukemia. For a cell to become leukemic, it must not only proliferate but also no longer become specialized. Mutations in its gene confer autonomous activity on the Kit receptor, thereby allowing cells to proliferate in the absence any external signal.This study was published in the 12 December 2005 issue of Cancer Cell.

Blood cells are produced in the bone marrow from stem cells. In response to growth factors, stem cells differentiate into precursor cells of three blood lines: red blood cells (also called erythrocytes), white blood cells (lymphocytes, macrophages…) and platelets. The cells are only released into the blood when they reach maturity.

Leukemias are malignant blood diseases characterized by the uncontrolled proliferation of blood cells. Lymphoid leukemias, which affect lymphocytes, are distinct from myeloid leukemias, which affect the precursors of all the other blood cell lines. The acute nature of leukemia is reflected in a complete absence of mature cells and in the presence in the bone marrow of numerous cells blocked at an early stage of their maturation.

In France, about 5 000 people are diagnosed with acute leukemia each year. The prognosis varies greatly from one type of leukemia to another. Acute myeloid leukemia accounts for 70% of acute leukemias, without regard to age. Its frequency peaks around 60 years of age. Erythroleukemia(1) is a type of myeloid leukemia.

A two-step mechanism

The molecular mechanisms underlying leukemia are legion and rare exceptions apart there is no single cause. These mechanisms are multi-stage. Murine cancer models used in research, like human tumors, are the result of accumulated genetic anomalies that enable cells to escape the control mechanisms involved in cell differentiation, growth and death by apoptosis.

In the case of erythroleukemia, researchers suspect the existence of a so-called “two-hit” model, although no verification has yet been forthcoming. Erythroleukemia is the consequence of a collaboration between two types of mutations, one that confers a proliferative advantage and one that blocks differentiation.

Uncontrolled proliferation results from mutation of a receptor

Françoise Moreau-Gachelin(2) and her Inserm team at the Institut Curie have now found evidence for this two-step mechanism and have shed light on how it works. They have worked on mice carrying a mutant gene that encodes the transcription factor(3) spi-1/PU.1, whose overexpression is involved in the onset of murine erythroleukemia, which therefore constitutes a good model for the study of human erythroleukemia.

Murine leukemia is characterized by a first event, which blocks the differentiation of precursor cells of the erythrocyte line, and a second event, which induces uncontrolled proliferation of the cells. The mechanism underlying the first event is known to be overexpression of the transcription factor spi-1/PU.1. The mechanism responsible for the second event was until now unknown.

By investigating the sequence of the gene coding for the Kit receptor, Françoise Moreau-Gachelin’s team discovered that this gene was mutated in 86% of the tumors studied.

Acting as a sort of switch, the Kit receptor relays information to the inside of the cell by activating its signaling pathways following receipt of a message from the outside. Françoise Moreau-Gachelin and her colleagues had shown before that some signaling pathways acting downstream of the receptors are “on” in leukemic cells and activate the proliferation of cells in the absence of an order from outside. They have now shown that the mutant Kit receptor is responsible for this uncontrolled activation.

The two-hit model has been validated: for a healthy cell to become malignant, the spi-1/PU.1 gene must be abnormally expressed and the Kit gene must be mutated. Mutation of the Kit gene is therefore a major event responsible for the transformation erythrocyte precursors into malignant cells during acute myeloid leukemia. It is vital to identify all the players in oncogenesis if we are to design new and more effective treatments for the fight against acute myeloid leukemia.


(1) Erythroleukemia affects red blood cells, also called erythrocytes.

(2) “Leukemogenesis and transcription factor Spi” team in Inserm U 528 “Signal transduction and oncogenesis” headed by Dr Olivier Delattre.

(3) A transcription factor is a protein which controls the expression of a gene.

Catherine Goupillon | alfa
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>