Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sea slug mixes chemical defense before firing at predators


System provides insight into chemical process with potential industrial applications

When threatened by predators, sea slugs defend themselves by ejecting a potent inky secretion into the water consisting of hydrogen peroxide, ammonia and several types of acids. A team of researchers with the Atlanta-based Center for Behavioral Neuroscience (CBN) has found that this secretion is produced from normally inert chemicals stored separately in two glands. The discovery, published in the Dec. 16 on-line edition of the Journal of Experimental Biology, provides insight into a natural chemical process with potential industrial applications.

In the study, a research team led by Georgia State University biologist Charles Derby, PhD, examined the ink and opaline glands of Aplysia sea slugs for the chemicals L-lysine, L-arginine and an enzyme protein called escapin. In previous research, Derby’s team determined that escapin mediates the chemical reaction with L-lysine and L-arginine that results in the defensive secretion. Using a variety of chemical and molecular techniques, the scientists identified L-lysine and L-arginine in the opaline gland, which produces the sticky white component of the secretion, and escapin in the ink gland, which produces the purple dye in the secretion.

"Aplysia packages these innocuous precursors separately and then releases them simultaneously into its mantle cavity at the precise time when they are needed," explained Derby. "This mechanism insures the secretion’s potency against attacking predators to enable sea slugs to escape."

Aplysia employs a variety of mechanisms to defend against predators. Its secretion stimulates feeding behaviors in spiny lobsters, but deters these behaviors in other animals. In previous studies, Derby and his team also identified an antimicrobial property in the secretion resulting from the chemical reaction between escapin and L-lysine. The scientists are currently examining the chemical process that results in the antimicrobial component and also are attempting to identify Aplysia predators which are affected by this property of the secretion.

"The antimicrobial property probably evolved to work against predators," said Derby. "But it might also function as an antimicrobial salve for Aplysia’s own wounds."

Derby’s team, who discovered escapin and holds a provisional patent for its genetic sequence, has been studying the protein for its potential applications as an antimicrobial compound for the healthcare and marine industries. The team has determined that escapin prevents the growth of all major forms of bacteria as well as other microbes.

"As we learn more about how escapin works in Aplysia, we will hopefully be able to reproduce its chemical properties in the laboratory," said Derby.

In addition to Derby, co-authors of the Journal of Experimental Biology study are Paul Johnson, PhD, Cynthia Kicklighter, PhD, Manfred Schmidt, PhD, Michiya Kamio, PhD, Hsiuchin Yang, PhD, and Phang Tai, PhD, of the Georgia State biology department. Other co-authors include physiologists Dimitry Elkin and William Michel, PhD, of the University of Utah School of Medicine.

Ann Claycombe | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>