Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene variation affects tamoxifen’s benefit for breast cancer

19.12.2005


Women with genetic variant were more likely to see their cancer return



One of the most commonly prescribed drugs for breast cancer, tamoxifen, may not be as effective for women who inherit a common genetic variation, according to researchers at the University of Michigan and the Mayo Clinic. The genetic variation affects the level of a crucial enzyme that activates tamoxifen to fight breast cancer.

The study, co-led by researcher James Rae, Ph.D., at the University of Michigan Comprehensive Cancer Center and Matthew Goetz, M.D., an oncologist at the Mayo Clinic, tested the most common genetic variant responsible for lowering the CYP2D6 enzyme, and found that women with this genetic variant were almost twice as likely to see their breast cancer return. Up to 10 percent of women inherit this genetic trait.


Their findings are published in the Dec. 20 issue of The Journal of Clinical Oncology.

"Our group has shown that CYP2D6 is responsible for activating tamoxifen to a metabolite called endoxifen that is nearly 100 times more potent as an anti-estrogen than tamoxifen itself," says Rae, research assistant professor of internal medicine at the U-M Medical School. "Our study suggests that women who inherit a genetic variant in the CYP2D6 gene appear to be at higher risk of relapse when treated with five years of tamoxifen."

Researchers at the U-M Comprehensive Cancer Center were among the group to discover CYP2D6 metabolizes tamoxifen, and they are leading ongoing work looking at how genetic differences affect women’s response to tamoxifen. Their research has also found the antidepressant drug Paxil can prevent tamoxifen from being activated, while the antidepressant drug Effexor does not. These drugs, selective serotonin reuptake inhibitors or SSRI’s, are often used to treat hot flashes, a common side effect of tamoxifen.

In this current study of 256 women with breast cancer, researchers also found that women with the CYP2D6 variant were less likely to have hot flashes. Any hot flashes among this group tended to be less severe, suggesting that this side effect could predict the gene variation.

Further studies are needed, but researchers hope one day this finding may lead to a genetic test that could help doctors determine which women are most likely to benefit from tamoxifen. This type of test is not currently offered clinically.

Rae and Daniel F. Hayes, M.D., director of breast oncology at the U-M Comprehensive Cancer Center, are part of the Pharmacogenetics Research Network, a multidisciplinary research group conducting a prospective clinical trial to confirm whether genetic testing can be used to identify patients likely to respond to endocrine therapy, including tamoxifen. This group is led by David A Flockhart, M.D., Ph.D. at Indiana University School of Medicine.

More than 210,000 women in the United States will develop breast cancer. Approximately 70 percent of these cancers are fueled by estrogen, many of which are treated with tamoxifen, a drug designed to block the effects of estrogen in breast tissue. The findings from this trial were derived from a large North Central Cancer Treatment Group study in which women were treated with tamoxifen, a pill that is taken daily, for a total of five years.

Additional authors included the following researchers from the Mayo Clinic Cancer Center: Vera Suman, Ph.D.; Stephanie Safgren; Matthew Ames, Ph.D.; Daniel Visscher, M.D.; Carol Reynolds, M.D.; Fergus Couch, Ph.D.; Wilma Lingle, Ph.D.; and James Ingle, M.D., in Rochester, Minn.; and Edith Perez, M.D., in Jacksonville, Fla.; David Flockhart, M.D., Ph.D., and Zeruesenay Desta, Ph.D., both from Indiana University are also co-authors.

Nicole Fawcett | EurekAlert!
Further information:
http://www.umich.edu
http://www.cancer.med.umich.edu/learn/breastinfo.htm

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>