Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rules to Target RNA Are Focus of Research

19.12.2005


Once described as DNA’s less-famous chemical cousin, RNA, or ribonucleic acid, recently has moved to center stage.



RNA, the genetic material that circulates throughout cells, orchestrates the building of proteins based on instructions provided by DNA, catalyzes chemical reactions and can alter expression of proteins that may lead to cancer and other diseases.

But finding compounds that bind to and inhibit an RNA sequence -- as a potential new approach to designing disease treatments -- is still very much a trial-and-error process, involving the tedious screening of millions of molecules against a single RNA sequence.


Now, a University at Buffalo medicinal chemist is hoping to change that.

Matthew D. Disney, Ph.D., assistant professor in the Department of Chemistry in UB’s College of Arts and Sciences, is working to develop rules for targeting RNA. These rules could be used in the rational design of compounds to inhibit a specific RNA sequence.

Disney’s goal, with the help of a five-year, $50,000 new faculty award from the Camille & Henry Dreyfus Foundation, is to develop a chemical code to enable rational design of binders to any RNA structure. His work also is funded by the New York State Center of Excellence in Bioinformatics and Life Sciences.

"What we would like to do is develop a general set of tools that can take an RNA sequence and design efficiently a compound that can turn its activity off," explained Disney.

The human genome and other sequencing efforts have uncovered a lot of sequence information, he continued, but the question, he asks, is, "How can that information be best exploited?"

"One answer may be to take RNA sequence information and design drugs that target that sequence," said Disney. "If that can be done, then a lot of the expense in designing new drugs goes out the window."

Potentially, that could facilitate the development of compounds to treat diseases ranging from antibiotic-resistant bacterial infections to cancer and genetic diseases, such as sickle cell anemia and cystic fibrosis, Disney said.

Rationally designed RNA inhibitors could, he explained, prove more valuable than molecules that inhibit DNA.

One reason is that while DNA bases or nucleotides are always paired according to the same formula, RNA bases have more diverse pairings, which makes targeting RNA more challenging, but also potentially more valuable.

"The ability to form different pairings allows RNA to have a much larger structural repertoire than DNA and that gives RNA the ability to have such diverse cellular functions," said Disney.

In addition, he said, because DNA is present only in the nucleus, pharmaceutical compounds that target it must be able to penetrate the nucleus.

"Since RNA is present both in the cell’s nucleus and cytoplasm, you do not need to get a compound into the nucleus to target it," he said.

Because RNA folds more like a protein than DNA does, it also may be easier to design compounds that selectively target specific structures, he added.

Disney lives in Williamsville.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>