Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rules to Target RNA Are Focus of Research

19.12.2005


Once described as DNA’s less-famous chemical cousin, RNA, or ribonucleic acid, recently has moved to center stage.



RNA, the genetic material that circulates throughout cells, orchestrates the building of proteins based on instructions provided by DNA, catalyzes chemical reactions and can alter expression of proteins that may lead to cancer and other diseases.

But finding compounds that bind to and inhibit an RNA sequence -- as a potential new approach to designing disease treatments -- is still very much a trial-and-error process, involving the tedious screening of millions of molecules against a single RNA sequence.


Now, a University at Buffalo medicinal chemist is hoping to change that.

Matthew D. Disney, Ph.D., assistant professor in the Department of Chemistry in UB’s College of Arts and Sciences, is working to develop rules for targeting RNA. These rules could be used in the rational design of compounds to inhibit a specific RNA sequence.

Disney’s goal, with the help of a five-year, $50,000 new faculty award from the Camille & Henry Dreyfus Foundation, is to develop a chemical code to enable rational design of binders to any RNA structure. His work also is funded by the New York State Center of Excellence in Bioinformatics and Life Sciences.

"What we would like to do is develop a general set of tools that can take an RNA sequence and design efficiently a compound that can turn its activity off," explained Disney.

The human genome and other sequencing efforts have uncovered a lot of sequence information, he continued, but the question, he asks, is, "How can that information be best exploited?"

"One answer may be to take RNA sequence information and design drugs that target that sequence," said Disney. "If that can be done, then a lot of the expense in designing new drugs goes out the window."

Potentially, that could facilitate the development of compounds to treat diseases ranging from antibiotic-resistant bacterial infections to cancer and genetic diseases, such as sickle cell anemia and cystic fibrosis, Disney said.

Rationally designed RNA inhibitors could, he explained, prove more valuable than molecules that inhibit DNA.

One reason is that while DNA bases or nucleotides are always paired according to the same formula, RNA bases have more diverse pairings, which makes targeting RNA more challenging, but also potentially more valuable.

"The ability to form different pairings allows RNA to have a much larger structural repertoire than DNA and that gives RNA the ability to have such diverse cellular functions," said Disney.

In addition, he said, because DNA is present only in the nucleus, pharmaceutical compounds that target it must be able to penetrate the nucleus.

"Since RNA is present both in the cell’s nucleus and cytoplasm, you do not need to get a compound into the nucleus to target it," he said.

Because RNA folds more like a protein than DNA does, it also may be easier to design compounds that selectively target specific structures, he added.

Disney lives in Williamsville.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>