Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing for the Origins of Genome Complexity

19.12.2005


Studying fish, like this ocean sulfish, scientists are revealing the link between evolution and a species’ genome. (Photo courtesy: Earthwindow.com/Mike Johnson)


Deciphering a paradox of evolution

Biologists at Georgia Tech have provided scientific support for a controversial hypothesis that has divided the fields of evolutionary genomics and evolutionary developmental biology, popularly known as evo devo, for two years. Appearing in the December 2005 issue of Trends in Genetics, researchers find that the size and complexity of a species’ genome is not an evolutionary adaptation per se, but can result as simply a consequence of a reduction in a species’ effective population size.

“As a general rule, more complex organisms, like humans, have larger genomes than less complex ones,” said J. Todd Streelman, assistant professor in the School of Biology at the Georgia Institute of Technology and co-author of the study. “You might think this means that animals with the largest genomes are the most complex – and for the most part that would be right. But it’s not always true. There are some species of frogs and some amoeba that have much larger genomes than humans.”



To help explain this paradox, a pair of scientists from Indiana University and the University of Oregon published a hotly-contested hypothesis in 2003. It said that most of the mutations that arise in organisms are not advantageous and that the smaller a species effective population size (the number of individuals who contribute genes to the next generation), the larger the genome will be.

“We agreed with some of the criticisms of the hypothesis – that one had to remove the effects of confounding factors like body size and developmental rate,” said Streelman. “We were able to remove the effects of these confounding factors and test whether genome size is adaptive.”

Their test consisted of analyzing data from 1,043 species of fresh and saltwater ray-finned fish. Previous data on genetic variability had established that freshwater species have a smaller effective population size than their marine counterparts. If the hypothesis was correct, the genome size of these freshwater fish would be larger than that of the saltwater dwellers. It was.

Then they matched the data with estimates of heterozygosity, a measure of the genetic variation of a population. Again they found that species with a smaller effective population had larger genomes.

“We see a very strong negative linear relationship between genome size and the effective population size,” said Soojin Yi, assistant professor in the School of Biology and lead author of the study. “This observation tells us that the mutations that increase the genome tend to be slightly deleterious, because population genetic theories predict such a relationship.”

“The interesting thing here is that biological complexity may passively evolve,” said Yi. “We show that at the origins, it’s not adaptive mutations, but slightly bad ones that make the genome larger. But if you have a large genome, there is more genetic material to play with to make something useful. At first, maybe these mutations aren’t so good for your genome, but as they accumulate and conditions change through evolution, they could become more complex and more beneficial.”

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>