Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing for the Origins of Genome Complexity

19.12.2005


Studying fish, like this ocean sulfish, scientists are revealing the link between evolution and a species’ genome. (Photo courtesy: Earthwindow.com/Mike Johnson)


Deciphering a paradox of evolution

Biologists at Georgia Tech have provided scientific support for a controversial hypothesis that has divided the fields of evolutionary genomics and evolutionary developmental biology, popularly known as evo devo, for two years. Appearing in the December 2005 issue of Trends in Genetics, researchers find that the size and complexity of a species’ genome is not an evolutionary adaptation per se, but can result as simply a consequence of a reduction in a species’ effective population size.

“As a general rule, more complex organisms, like humans, have larger genomes than less complex ones,” said J. Todd Streelman, assistant professor in the School of Biology at the Georgia Institute of Technology and co-author of the study. “You might think this means that animals with the largest genomes are the most complex – and for the most part that would be right. But it’s not always true. There are some species of frogs and some amoeba that have much larger genomes than humans.”



To help explain this paradox, a pair of scientists from Indiana University and the University of Oregon published a hotly-contested hypothesis in 2003. It said that most of the mutations that arise in organisms are not advantageous and that the smaller a species effective population size (the number of individuals who contribute genes to the next generation), the larger the genome will be.

“We agreed with some of the criticisms of the hypothesis – that one had to remove the effects of confounding factors like body size and developmental rate,” said Streelman. “We were able to remove the effects of these confounding factors and test whether genome size is adaptive.”

Their test consisted of analyzing data from 1,043 species of fresh and saltwater ray-finned fish. Previous data on genetic variability had established that freshwater species have a smaller effective population size than their marine counterparts. If the hypothesis was correct, the genome size of these freshwater fish would be larger than that of the saltwater dwellers. It was.

Then they matched the data with estimates of heterozygosity, a measure of the genetic variation of a population. Again they found that species with a smaller effective population had larger genomes.

“We see a very strong negative linear relationship between genome size and the effective population size,” said Soojin Yi, assistant professor in the School of Biology and lead author of the study. “This observation tells us that the mutations that increase the genome tend to be slightly deleterious, because population genetic theories predict such a relationship.”

“The interesting thing here is that biological complexity may passively evolve,” said Yi. “We show that at the origins, it’s not adaptive mutations, but slightly bad ones that make the genome larger. But if you have a large genome, there is more genetic material to play with to make something useful. At first, maybe these mutations aren’t so good for your genome, but as they accumulate and conditions change through evolution, they could become more complex and more beneficial.”

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>