Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing for the Origins of Genome Complexity

19.12.2005


Studying fish, like this ocean sulfish, scientists are revealing the link between evolution and a species’ genome. (Photo courtesy: Earthwindow.com/Mike Johnson)


Deciphering a paradox of evolution

Biologists at Georgia Tech have provided scientific support for a controversial hypothesis that has divided the fields of evolutionary genomics and evolutionary developmental biology, popularly known as evo devo, for two years. Appearing in the December 2005 issue of Trends in Genetics, researchers find that the size and complexity of a species’ genome is not an evolutionary adaptation per se, but can result as simply a consequence of a reduction in a species’ effective population size.

“As a general rule, more complex organisms, like humans, have larger genomes than less complex ones,” said J. Todd Streelman, assistant professor in the School of Biology at the Georgia Institute of Technology and co-author of the study. “You might think this means that animals with the largest genomes are the most complex – and for the most part that would be right. But it’s not always true. There are some species of frogs and some amoeba that have much larger genomes than humans.”



To help explain this paradox, a pair of scientists from Indiana University and the University of Oregon published a hotly-contested hypothesis in 2003. It said that most of the mutations that arise in organisms are not advantageous and that the smaller a species effective population size (the number of individuals who contribute genes to the next generation), the larger the genome will be.

“We agreed with some of the criticisms of the hypothesis – that one had to remove the effects of confounding factors like body size and developmental rate,” said Streelman. “We were able to remove the effects of these confounding factors and test whether genome size is adaptive.”

Their test consisted of analyzing data from 1,043 species of fresh and saltwater ray-finned fish. Previous data on genetic variability had established that freshwater species have a smaller effective population size than their marine counterparts. If the hypothesis was correct, the genome size of these freshwater fish would be larger than that of the saltwater dwellers. It was.

Then they matched the data with estimates of heterozygosity, a measure of the genetic variation of a population. Again they found that species with a smaller effective population had larger genomes.

“We see a very strong negative linear relationship between genome size and the effective population size,” said Soojin Yi, assistant professor in the School of Biology and lead author of the study. “This observation tells us that the mutations that increase the genome tend to be slightly deleterious, because population genetic theories predict such a relationship.”

“The interesting thing here is that biological complexity may passively evolve,” said Yi. “We show that at the origins, it’s not adaptive mutations, but slightly bad ones that make the genome larger. But if you have a large genome, there is more genetic material to play with to make something useful. At first, maybe these mutations aren’t so good for your genome, but as they accumulate and conditions change through evolution, they could become more complex and more beneficial.”

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Viruses support photosynthesis in bacteria – an evolutionary advantage?
23.02.2017 | Technische Universität Kaiserslautern

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>