Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standing up to paraplegia with gene therapy

16.12.2005


Elena Rugarli and colleagues from the National Neurological Institute in Milan have used gene therapy to save sensory and skeletal muscle nerve fibers from degeneration in mice with hereditary spastic paraplegia (HSP). This strategy, reported online on December 15 in advance of print publication in the January 2006 issue of the Journal of Clinical Investigation, holds promise for many other disorders characterized by nerve degeneration due to loss of function of a known gene.



Hereditary spastic paraplegia (HSP), a neurodegenerative disorder caused by progressive loss of sensory and skeletal muscle nerve fibers (axons), is characterized by weakness, spasticity, and impaired function of the lower limbs. The disorder is often due to mutations in the gene encoding the paraplegin protein. HSP sufferers are ultimately confined to a wheelchair, and currently there is no cure for the disease. In the current study, Rugarli and colleagues have shown that a one-time delivery of normal paraplegin by a viral vector to the spinal motor neurons of mice with HSP, before the onset of symptoms, was able to save axons from degeneration for up to 10 months.

Delivery of this mitochondrial energy-dependent protease improved motor function in the mice and these data show that delivery of an intracellular protein to spinal motor neurons by gene transfer may be useful not only for the treatment of HSP patients but also for those individuals with other forms of peripheral nerve damage of known genetic origin.


TITLE: Intramuscular viral delivery of paraplegin rescues peripheral axonopathy in a model of hereditary spastic paraplegia

AUTHOR CONTACT:
Elena I. Rugarli
National Neurological Institute, Milan, Italy
Phone: 39-02-23942614, Fax: 39-02-23942619, E-mail: rugarli@istituto-besta.it

Brooke Grindlinger | EurekAlert!
Further information:
http://www.the-jci.org
http://www.the-jci.org/article.php?id=26210

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>