Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An obstacle to cancer cells


The circulation of cancer cells through the blood vessels is often the cause of metastasis. These cancer cells contaminate normal cells and the pathology spreads throughout the body. Metastasis is the main risk in cancers. In order to prevent this process from occurring, a team from the Chemistry Faculty at the Donostia-San Sebastián campus of the University of the Basque Country (UPV-EHU) analysed the connections between cancer and normal cells.

Concretely, the UPV-EHU analysed the proteins that are involved in these connections. From amongst these proteins, they chose the ones that have a single active centre. If this centre is blocked, the cancer cell will not be able to adhere itself to a healthy cell and, thus, this path of spreading the disease is blocked.

The first thing to do is to analyse the structure of the proteins chosen. This task is undertaken using computers, given that the proteins are gigantic molecules. Once the structure is analysed and with the data for the active centre of the connection, the design of a new, small molecule to block this centre is initiated.

Diminutive in order to be stealthy

The new molecule must have very special characteristics, the main one being its size: so that our immunological system does not detect it, it has to be very small; if the new synthesised molecule is any bigger, our immunological system will detect and destroy it.

Also, this new diminutive molecule must adhere itself to the active centre of the protein and, in order to do this, it has to comply to a series of requirements, i.e. it must imitate the naturally-occurring molecule that connects to the active centre.

Using all these characteristics, a series of molecules - a family of new molecules - is designed and then synthesised. It has to be taken into account that these molecules have not been created previously and do not exist naturally and, consequently, it is not known if they are stable or not.

The final step is to verify that the new synthesised molecules carry out their job.

To block and to die

First of all, trials are carried out in vitro. Here the new molecules are analysed for their capacity to adhere to the protein and neutralise it. If a cancer cell is unable to unite with a healthy cell and contaminate it, it enters a programmed stage of death and self-destructs. Moreover, as a range of molecules has been designed and developed, it has to be known which give the best results and which are the most active.

The most active molecule in the in vitro trials have to demonstrate subsequently that they are also the most active in vivo, and often the results can vary. It is possible for another molecule from the same family to have better results in vivo; thus, it is vital to carry out these trials.

Once the series of trials are over, it can be decided to enhance the molecule’s efficacy or, if the results are very good, the process to convert it into medication can be initiated. But this is not the task of chemists; their job now is to follow another line of research to design more new molecules to combat other protein cancer cell connections.

Garazi Andonegi | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>