Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An obstacle to cancer cells

16.12.2005


The circulation of cancer cells through the blood vessels is often the cause of metastasis. These cancer cells contaminate normal cells and the pathology spreads throughout the body. Metastasis is the main risk in cancers. In order to prevent this process from occurring, a team from the Chemistry Faculty at the Donostia-San Sebastián campus of the University of the Basque Country (UPV-EHU) analysed the connections between cancer and normal cells.



Concretely, the UPV-EHU analysed the proteins that are involved in these connections. From amongst these proteins, they chose the ones that have a single active centre. If this centre is blocked, the cancer cell will not be able to adhere itself to a healthy cell and, thus, this path of spreading the disease is blocked.

The first thing to do is to analyse the structure of the proteins chosen. This task is undertaken using computers, given that the proteins are gigantic molecules. Once the structure is analysed and with the data for the active centre of the connection, the design of a new, small molecule to block this centre is initiated.


Diminutive in order to be stealthy

The new molecule must have very special characteristics, the main one being its size: so that our immunological system does not detect it, it has to be very small; if the new synthesised molecule is any bigger, our immunological system will detect and destroy it.

Also, this new diminutive molecule must adhere itself to the active centre of the protein and, in order to do this, it has to comply to a series of requirements, i.e. it must imitate the naturally-occurring molecule that connects to the active centre.

Using all these characteristics, a series of molecules - a family of new molecules - is designed and then synthesised. It has to be taken into account that these molecules have not been created previously and do not exist naturally and, consequently, it is not known if they are stable or not.

The final step is to verify that the new synthesised molecules carry out their job.

To block and to die

First of all, trials are carried out in vitro. Here the new molecules are analysed for their capacity to adhere to the protein and neutralise it. If a cancer cell is unable to unite with a healthy cell and contaminate it, it enters a programmed stage of death and self-destructs. Moreover, as a range of molecules has been designed and developed, it has to be known which give the best results and which are the most active.

The most active molecule in the in vitro trials have to demonstrate subsequently that they are also the most active in vivo, and often the results can vary. It is possible for another molecule from the same family to have better results in vivo; thus, it is vital to carry out these trials.

Once the series of trials are over, it can be decided to enhance the molecule’s efficacy or, if the results are very good, the process to convert it into medication can be initiated. But this is not the task of chemists; their job now is to follow another line of research to design more new molecules to combat other protein cancer cell connections.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=838
http://www.elhuyar.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>