Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An obstacle to cancer cells

16.12.2005


The circulation of cancer cells through the blood vessels is often the cause of metastasis. These cancer cells contaminate normal cells and the pathology spreads throughout the body. Metastasis is the main risk in cancers. In order to prevent this process from occurring, a team from the Chemistry Faculty at the Donostia-San Sebastián campus of the University of the Basque Country (UPV-EHU) analysed the connections between cancer and normal cells.



Concretely, the UPV-EHU analysed the proteins that are involved in these connections. From amongst these proteins, they chose the ones that have a single active centre. If this centre is blocked, the cancer cell will not be able to adhere itself to a healthy cell and, thus, this path of spreading the disease is blocked.

The first thing to do is to analyse the structure of the proteins chosen. This task is undertaken using computers, given that the proteins are gigantic molecules. Once the structure is analysed and with the data for the active centre of the connection, the design of a new, small molecule to block this centre is initiated.


Diminutive in order to be stealthy

The new molecule must have very special characteristics, the main one being its size: so that our immunological system does not detect it, it has to be very small; if the new synthesised molecule is any bigger, our immunological system will detect and destroy it.

Also, this new diminutive molecule must adhere itself to the active centre of the protein and, in order to do this, it has to comply to a series of requirements, i.e. it must imitate the naturally-occurring molecule that connects to the active centre.

Using all these characteristics, a series of molecules - a family of new molecules - is designed and then synthesised. It has to be taken into account that these molecules have not been created previously and do not exist naturally and, consequently, it is not known if they are stable or not.

The final step is to verify that the new synthesised molecules carry out their job.

To block and to die

First of all, trials are carried out in vitro. Here the new molecules are analysed for their capacity to adhere to the protein and neutralise it. If a cancer cell is unable to unite with a healthy cell and contaminate it, it enters a programmed stage of death and self-destructs. Moreover, as a range of molecules has been designed and developed, it has to be known which give the best results and which are the most active.

The most active molecule in the in vitro trials have to demonstrate subsequently that they are also the most active in vivo, and often the results can vary. It is possible for another molecule from the same family to have better results in vivo; thus, it is vital to carry out these trials.

Once the series of trials are over, it can be decided to enhance the molecule’s efficacy or, if the results are very good, the process to convert it into medication can be initiated. But this is not the task of chemists; their job now is to follow another line of research to design more new molecules to combat other protein cancer cell connections.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=838
http://www.elhuyar.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>