Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An obstacle to cancer cells

16.12.2005


The circulation of cancer cells through the blood vessels is often the cause of metastasis. These cancer cells contaminate normal cells and the pathology spreads throughout the body. Metastasis is the main risk in cancers. In order to prevent this process from occurring, a team from the Chemistry Faculty at the Donostia-San Sebastián campus of the University of the Basque Country (UPV-EHU) analysed the connections between cancer and normal cells.



Concretely, the UPV-EHU analysed the proteins that are involved in these connections. From amongst these proteins, they chose the ones that have a single active centre. If this centre is blocked, the cancer cell will not be able to adhere itself to a healthy cell and, thus, this path of spreading the disease is blocked.

The first thing to do is to analyse the structure of the proteins chosen. This task is undertaken using computers, given that the proteins are gigantic molecules. Once the structure is analysed and with the data for the active centre of the connection, the design of a new, small molecule to block this centre is initiated.


Diminutive in order to be stealthy

The new molecule must have very special characteristics, the main one being its size: so that our immunological system does not detect it, it has to be very small; if the new synthesised molecule is any bigger, our immunological system will detect and destroy it.

Also, this new diminutive molecule must adhere itself to the active centre of the protein and, in order to do this, it has to comply to a series of requirements, i.e. it must imitate the naturally-occurring molecule that connects to the active centre.

Using all these characteristics, a series of molecules - a family of new molecules - is designed and then synthesised. It has to be taken into account that these molecules have not been created previously and do not exist naturally and, consequently, it is not known if they are stable or not.

The final step is to verify that the new synthesised molecules carry out their job.

To block and to die

First of all, trials are carried out in vitro. Here the new molecules are analysed for their capacity to adhere to the protein and neutralise it. If a cancer cell is unable to unite with a healthy cell and contaminate it, it enters a programmed stage of death and self-destructs. Moreover, as a range of molecules has been designed and developed, it has to be known which give the best results and which are the most active.

The most active molecule in the in vitro trials have to demonstrate subsequently that they are also the most active in vivo, and often the results can vary. It is possible for another molecule from the same family to have better results in vivo; thus, it is vital to carry out these trials.

Once the series of trials are over, it can be decided to enhance the molecule’s efficacy or, if the results are very good, the process to convert it into medication can be initiated. But this is not the task of chemists; their job now is to follow another line of research to design more new molecules to combat other protein cancer cell connections.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=838
http://www.elhuyar.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>