Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methods Offer Insight into Regulatory DNA

16.12.2005


Through the Human Genome Project, the HapMap Project and other efforts, we are beginning to identify genes that are modified in some diseases. More difficult to measure and identify are the regulatory regions in DNA – the ‘managers’ of genes – that control gene activity and might be important in causing disease.



Today, a team led by the Wellcome Trust Sanger Institute, together with colleagues in the USA and Switzerland, provide a measure of just how important regulatory region variation might be in a pilot study based on some 2% of the human genome. As many as 40 of 374 genes showed alteration in genetic activity that could be related to changes in DNA sequence called SNPs.

“We were amazed at the power of this study to detect associations between SNP variations and gene activity,” commented Dr Manolis Dermitzakis, Investigator, Division of Informatics at the Wellcome Trust Sanger Institute. “We were even more amazed at the number of genes affected: more than 10% of our sample – or perhaps 3000 genes across the genome – could be subject to modification of activity in human populations due to common genetic variations.”


The study combined the map of genetic variation developed through the HapMap with estimates of gene activity obtained from cell cultures from 60 individuals who provided samples for the HapMap. More than 630 genes were studied, of which 374 were active in the cell cultures. If gene activity in a cell culture was skewed from the average, it was investigated further.

These genes were correlated with more than 750,000 SNPs – sequence differences between individuals in the sample collection. A series of statistical tests were carried out to provide increased confidence in the association between gene activity and sequence variation.

“Our sample size of 60 individuals is relatively small,” continued Dr Dermitzakis, “and we might expect not to detect rare variations. However, our pilot project gives us greater confidence to take on a genome-wide survey of gene activity.”

A global map of sequence variation and gene activity will be an important tool in the interpretation of variation and disease. Such genome-wide association studies will be able to identify some regions of the genome with strong disease effects.

“The HapMap is proving to be useful in a wide range of applications,” commented Dr Panos Deloukas, Senior Investigator, Division of Medical Genetics, Wellcome Trust Sanger Institute. “The journey for our biomedical research is from DNA sequence to individual people and individual disease. The HapMap is a bridge from sequence data to the differences in individuals.”

The project focused on three regions of the human genome. The first, called the ENCODE regions, and about 30 million base-pairs of DNA, are being intensively studied around the world as a group of ‘typical’ human genome regions. The second was 35million base-pairs of chromosome 21 sequence: three copies of chromosome 21 lead to Down Syndrome. The third was a region of chromosome 20 – 10 million base-pairs – that is known to be associated with diabetes and obesity.

In comparison with gene sequences that contain the instructions to make proteins, regulatory regions that control genes are relatively poorly understood. Their structure is variable and their distance from the genes they control also varies among genes.

New tools are needed in the search of our genome for the sequences that contribute to disease, tools that will harness the massive amounts of DNA information and transform them into information of real biomedical utility. The methods described here, with the power of the HapMap data and the cell cultures available, will speed that transformation.

Don Powell | alfa
Further information:
http://www.plosgenetics.org
http://www.sanger.ac.uk
http://www.genome.gov/10005107

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>