Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Methods Offer Insight into Regulatory DNA

16.12.2005


Through the Human Genome Project, the HapMap Project and other efforts, we are beginning to identify genes that are modified in some diseases. More difficult to measure and identify are the regulatory regions in DNA – the ‘managers’ of genes – that control gene activity and might be important in causing disease.



Today, a team led by the Wellcome Trust Sanger Institute, together with colleagues in the USA and Switzerland, provide a measure of just how important regulatory region variation might be in a pilot study based on some 2% of the human genome. As many as 40 of 374 genes showed alteration in genetic activity that could be related to changes in DNA sequence called SNPs.

“We were amazed at the power of this study to detect associations between SNP variations and gene activity,” commented Dr Manolis Dermitzakis, Investigator, Division of Informatics at the Wellcome Trust Sanger Institute. “We were even more amazed at the number of genes affected: more than 10% of our sample – or perhaps 3000 genes across the genome – could be subject to modification of activity in human populations due to common genetic variations.”


The study combined the map of genetic variation developed through the HapMap with estimates of gene activity obtained from cell cultures from 60 individuals who provided samples for the HapMap. More than 630 genes were studied, of which 374 were active in the cell cultures. If gene activity in a cell culture was skewed from the average, it was investigated further.

These genes were correlated with more than 750,000 SNPs – sequence differences between individuals in the sample collection. A series of statistical tests were carried out to provide increased confidence in the association between gene activity and sequence variation.

“Our sample size of 60 individuals is relatively small,” continued Dr Dermitzakis, “and we might expect not to detect rare variations. However, our pilot project gives us greater confidence to take on a genome-wide survey of gene activity.”

A global map of sequence variation and gene activity will be an important tool in the interpretation of variation and disease. Such genome-wide association studies will be able to identify some regions of the genome with strong disease effects.

“The HapMap is proving to be useful in a wide range of applications,” commented Dr Panos Deloukas, Senior Investigator, Division of Medical Genetics, Wellcome Trust Sanger Institute. “The journey for our biomedical research is from DNA sequence to individual people and individual disease. The HapMap is a bridge from sequence data to the differences in individuals.”

The project focused on three regions of the human genome. The first, called the ENCODE regions, and about 30 million base-pairs of DNA, are being intensively studied around the world as a group of ‘typical’ human genome regions. The second was 35million base-pairs of chromosome 21 sequence: three copies of chromosome 21 lead to Down Syndrome. The third was a region of chromosome 20 – 10 million base-pairs – that is known to be associated with diabetes and obesity.

In comparison with gene sequences that contain the instructions to make proteins, regulatory regions that control genes are relatively poorly understood. Their structure is variable and their distance from the genes they control also varies among genes.

New tools are needed in the search of our genome for the sequences that contribute to disease, tools that will harness the massive amounts of DNA information and transform them into information of real biomedical utility. The methods described here, with the power of the HapMap data and the cell cultures available, will speed that transformation.

Don Powell | alfa
Further information:
http://www.plosgenetics.org
http://www.sanger.ac.uk
http://www.genome.gov/10005107

More articles from Life Sciences:

nachricht Molecular libraries for organic light-emitting diodes
24.04.2017 | Goethe-Universität Frankfurt am Main

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>