Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery focuses on the ‘point’ of plant cell development


Scientists at the John Innes Centre (JIC), Norwich, UK[1], today report a breakthrough in understanding how plant cells control the direction of their growth. The report, in the international scientific journal Nature[2], describes a gene (called SCN1) which controls the activity of an enzyme that is critical to cell growth. The researchers have found that SCN1 keeps cell growth in check.

“This is an exciting discovery because the direction of cell growth is very important in determining the shape of plant cells and this controls the overall shape and structure of the plant”, says Professor Liam Dolan (project leader at JIC). “We already know about some of the processes involved in cell growth but this is a new insight into how they are localised so that cells can be made to grow in a particular direction”.

The researchers made their discovery from studies on root hair formation on roots of the model plant Thale Cress (Arabidopsis thaliana). Root hairs are important to the plant as they dramatically increase the surface area of the roots, providing a large surface through which water and minerals can be absorbed.

These hair cells are of interest to Dr Dolan’s group because of the way they develop from cells on the surface of the root. Initially a small bulge forms in the surface wall of a root cell and from this bulge a root hair develops. The hairs are long thin cells that grow away from the root surface by cell growth at their tip; the tip of the hair cell ‘pushes’ itself away from the root. To understand how cell growth is restricted to just the tip of the cell the scientists compared several mutant plants where hair development and growth was abnormal. In the plants with abnormal development they discovered that the processes needed for cell growth were not localised, consequently root cells could produce multiple root hairs and the root hairs had several growing tips.

They established that this unusual growth was the result of damage to a specific gene (SCN1). SCN1 produces an enzyme (AtrohGDI1) that inactivates another enzyme (AtrbohC) that promotes cell growth. In the mutants, were no AtrohGDI1 is produced, the cell growth enzyme AtrbohC is hyperactivated, and its activity is dispersed around the cell. Consequently, growth gets out of control resulting in the formation of weird cell shapes[3].

Professor Dolan concludes “experiments on the root hairs of the common weed Arabidopsis may seem bizarre but they are giving us valuable new insights into the sophisticated systems that all multicellular organisms such as plants, animals and fungi use to control their growth. The more we understand of how plants direct their development and eventual size, shape and structure, the greater the opportunities we have to breed plants that have been altered to perform better as crops or ornamentals”.


1) The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

2) Nature can be contacted at: Nature London
Katharine Mansell, Tel:+44 (0)20 7843 4658; Fax:+44 (0)20 7843 4951
Sophie Hebden,
Tel: +44 (0)20 7843 4502; Fax:+44 (0)20 7843 4951
The paper referred to in this release is “A RhoGDP dissociation inhibitor spatially regulates growth of root hair cells. Rachel Carol et al. 2005 Nature”.

3) Root hair cells develop from epidermal root cells (called trichoblasts). Initially a bulge forms on the surface wall of the trichoblast and from this bulge a root hair develops. Root hair cell growth occurs at the tip; the tip of the hair cell ‘pushes’ itself away from the root as the cell elongates in a zone immediately behind the cell tip.

Plant cell growth requires production of reactive oxygen species (ROS) by RHD2/AtrbohC NADPH oxidase. The tip growth seen in root hair cells is correlated with the activity of RHD2/AtrbohC NADPH oxidase and ROS production, which is restricted to the cell tip.

In mutants where root hair development and growth was abnormal ROS production was not localised and this correlated with trichoblasts producing multiple root hairs and root hairs having several growth axis.

The mutated gene (SCN1 = SUPERCENTIPEDE1) encodes a RhoGTPase GDP dissociation inhibitor. SCN1’s enzyme product (AtrohGDI1) represses (inactivates) the AtrbohC NADPH oxidase that produces ROS critical for cell growth. AtrohGDI1 is a component of the mechanism that focuses/restricts AtrbohC NADPH oxidase activity to the cell tip.

Liam Dolan | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>