Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery focuses on the ‘point’ of plant cell development

16.12.2005


Scientists at the John Innes Centre (JIC), Norwich, UK[1], today report a breakthrough in understanding how plant cells control the direction of their growth. The report, in the international scientific journal Nature[2], describes a gene (called SCN1) which controls the activity of an enzyme that is critical to cell growth. The researchers have found that SCN1 keeps cell growth in check.



“This is an exciting discovery because the direction of cell growth is very important in determining the shape of plant cells and this controls the overall shape and structure of the plant”, says Professor Liam Dolan (project leader at JIC). “We already know about some of the processes involved in cell growth but this is a new insight into how they are localised so that cells can be made to grow in a particular direction”.

The researchers made their discovery from studies on root hair formation on roots of the model plant Thale Cress (Arabidopsis thaliana). Root hairs are important to the plant as they dramatically increase the surface area of the roots, providing a large surface through which water and minerals can be absorbed.


These hair cells are of interest to Dr Dolan’s group because of the way they develop from cells on the surface of the root. Initially a small bulge forms in the surface wall of a root cell and from this bulge a root hair develops. The hairs are long thin cells that grow away from the root surface by cell growth at their tip; the tip of the hair cell ‘pushes’ itself away from the root. To understand how cell growth is restricted to just the tip of the cell the scientists compared several mutant plants where hair development and growth was abnormal. In the plants with abnormal development they discovered that the processes needed for cell growth were not localised, consequently root cells could produce multiple root hairs and the root hairs had several growing tips.

They established that this unusual growth was the result of damage to a specific gene (SCN1). SCN1 produces an enzyme (AtrohGDI1) that inactivates another enzyme (AtrbohC) that promotes cell growth. In the mutants, were no AtrohGDI1 is produced, the cell growth enzyme AtrbohC is hyperactivated, and its activity is dispersed around the cell. Consequently, growth gets out of control resulting in the formation of weird cell shapes[3].

Professor Dolan concludes “experiments on the root hairs of the common weed Arabidopsis may seem bizarre but they are giving us valuable new insights into the sophisticated systems that all multicellular organisms such as plants, animals and fungi use to control their growth. The more we understand of how plants direct their development and eventual size, shape and structure, the greater the opportunities we have to breed plants that have been altered to perform better as crops or ornamentals”.

Notes:

1) The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

2) Nature can be contacted at: Nature London
Katharine Mansell, Tel:+44 (0)20 7843 4658; Fax:+44 (0)20 7843 4951
E-mail: k.mansell@nature.com
Sophie Hebden,
Tel: +44 (0)20 7843 4502; Fax:+44 (0)20 7843 4951
E-mail: s.hebden@nature.com
The paper referred to in this release is “A RhoGDP dissociation inhibitor spatially regulates growth of root hair cells. Rachel Carol et al. 2005 Nature”.

3) Root hair cells develop from epidermal root cells (called trichoblasts). Initially a bulge forms on the surface wall of the trichoblast and from this bulge a root hair develops. Root hair cell growth occurs at the tip; the tip of the hair cell ‘pushes’ itself away from the root as the cell elongates in a zone immediately behind the cell tip.

Plant cell growth requires production of reactive oxygen species (ROS) by RHD2/AtrbohC NADPH oxidase. The tip growth seen in root hair cells is correlated with the activity of RHD2/AtrbohC NADPH oxidase and ROS production, which is restricted to the cell tip.

In mutants where root hair development and growth was abnormal ROS production was not localised and this correlated with trichoblasts producing multiple root hairs and root hairs having several growth axis.

The mutated gene (SCN1 = SUPERCENTIPEDE1) encodes a RhoGTPase GDP dissociation inhibitor. SCN1’s enzyme product (AtrohGDI1) represses (inactivates) the AtrbohC NADPH oxidase that produces ROS critical for cell growth. AtrohGDI1 is a component of the mechanism that focuses/restricts AtrbohC NADPH oxidase activity to the cell tip.

Liam Dolan | alfa
Further information:
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>