Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineered stem cells show promise for sneaking drugs into the brain

15.12.2005


One of the great challenges for treating Parkinson’s diseases and other neurodegenerative disorders is getting medicine to the right place in the brain.



The brain is a complex organ with many different types of cells and structures, and it is fortified with a protective barrier erected by blood vessels and glial cells -- the brain’s structural building blocks -- that effectively blocks the delivery of most drugs from the bloodstream.

But now scientists have found a new way to sneak drugs past the blood-brain barrier by engineering and implanting progenitor brain cells derived from stem cells to produce and deliver a critical growth factor that has already shown clinical promise for treating Parkinson’s disease.


Writing this week (Dec. 15, 2005) in the journal Gene Therapy, University of Wisconsin-Madison neuroscientist Clive Svendsen and his colleagues describe experiments that demonstrate that engineered human brain progenitor cells, transplanted into the brains of rats and monkeys, can effectively integrate into the brain and deliver medicine where it is needed.

The Wisconsin team obtained and grew large numbers of progenitor cells from human fetal brain tissue. They then engineered the cells to produce a growth factor known as glial cell line-derived neurotrophic factor (GDNF). In some small but promising clinical trials, GDNF showed a marked ability to provide relief from the debilitating symptoms of Parkinson’s. But the drug, which is expensive and hard to obtain, had to be pumped directly into the brains of Parkinson’s patients for it to work, as it is unable to cross the blood-brain barrier.

In an effort to develop a less invasive strategy to effectively deliver the drug to the brain, Svendsen’s team implanted the GDNF secreting cells into the brains of rats and elderly primates. The cells migrated within critical areas of the brain and produced the growth factor in quantities sufficient for improving the survival and function of the defective cells at the root of Parkinson’s.

"This work shows that stem cells can be used as drug delivery vehicles in the brain," says Svendsen, a professor of anatomy whose laboratory is at the UW-Madison Waisman Center.

The new Wisconsin study, whose lead author is Soshana Behrstock, depended on formative brain cells that were coaxed from blank-slate stem cells. The progenitor neural cells were genetically modified to secrete the growth factor when implanted in the striatum, a large cluster of cells in the brain that controls movement, balance and walking.

To work effectively, the cells in the striatum require dopamine, a chemical that is produced deep in the brain and that travels up nerve fibers to the striatum where it is used to keep critical cells functional. Loss of the ability to produce dopamine is the root cause of Parkinson’s, a disease that afflicts about 1.5 million people in the United States.

In the new Wisconsin study, the GDNF-producing cells transplanted in the striatum of animals with a condition like Parkinson’s showed not only that a critical drug could be delivered to the right place, but that the drug was delivered in a way that promoted its therapeutic potential. The researchers reported new nerve fiber growth in the striatum and the transport of the critical nerve growth factor GDNF from the striatum to the substantia niagra, the part of the brain that harbors the cells that produce dopamine.

"In Parkinson’s, the striatum loses fibers," Svendsen explains. But cells in the striatum exposed to GDNF in the Wisconsin study showed an ability to recover and sprout new fibers.

"It actually seems to work better in the terminal (striatum)," Svendsen says. "The bonus is it gets transported back to the substantia niagra."

The transplanted cells, according to Behrstock, survived and continued to produce GDNF in laboratory animals for up to three months.

One hurdle that needs to be overcome before such a technique could be attempted in human patients, says Svendsen, is developing a method to switch transplanted cells on or off and thus control their drug delivery capabilities. Working with engineered cells in culture, the Wisconsin group found they could switch the cells on and off using a second drug. Doing so in animal models, however, was more difficult and the issue will need to be addressed in new experiments, according to Svendsen.

The new study, Svendsen argues, proves that progenitor cells -- cells that can now be made in large quantities in the laboratory -- can be crafted to help clinicians deliver drugs where they are needed most in the body. Delivering medicine to the brain, whose blood-brain barrier effectively excludes more than 70 percent of all drugs, would be an especially valuable use for the cells. Such a new method may be useful for treating a number of neurodegenerative diseases beyond Parkinson’s, he says.

In addition to Svendsen and Behrstock, authors of the new Gene Therapy paper include Allison Ebert, Jacqueline McHugh, Stephen Vosberg, Elizabeth Capowski, Bernard Schneider and Derek Hei, all of UW-Madison; Jeffery Kordower of Rush University Medical Center; and Patrick Aebischer of the Swiss Federal Institute of Technology.

Clive Svendsen | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>