Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineered stem cells show promise for sneaking drugs into the brain


One of the great challenges for treating Parkinson’s diseases and other neurodegenerative disorders is getting medicine to the right place in the brain.

The brain is a complex organ with many different types of cells and structures, and it is fortified with a protective barrier erected by blood vessels and glial cells -- the brain’s structural building blocks -- that effectively blocks the delivery of most drugs from the bloodstream.

But now scientists have found a new way to sneak drugs past the blood-brain barrier by engineering and implanting progenitor brain cells derived from stem cells to produce and deliver a critical growth factor that has already shown clinical promise for treating Parkinson’s disease.

Writing this week (Dec. 15, 2005) in the journal Gene Therapy, University of Wisconsin-Madison neuroscientist Clive Svendsen and his colleagues describe experiments that demonstrate that engineered human brain progenitor cells, transplanted into the brains of rats and monkeys, can effectively integrate into the brain and deliver medicine where it is needed.

The Wisconsin team obtained and grew large numbers of progenitor cells from human fetal brain tissue. They then engineered the cells to produce a growth factor known as glial cell line-derived neurotrophic factor (GDNF). In some small but promising clinical trials, GDNF showed a marked ability to provide relief from the debilitating symptoms of Parkinson’s. But the drug, which is expensive and hard to obtain, had to be pumped directly into the brains of Parkinson’s patients for it to work, as it is unable to cross the blood-brain barrier.

In an effort to develop a less invasive strategy to effectively deliver the drug to the brain, Svendsen’s team implanted the GDNF secreting cells into the brains of rats and elderly primates. The cells migrated within critical areas of the brain and produced the growth factor in quantities sufficient for improving the survival and function of the defective cells at the root of Parkinson’s.

"This work shows that stem cells can be used as drug delivery vehicles in the brain," says Svendsen, a professor of anatomy whose laboratory is at the UW-Madison Waisman Center.

The new Wisconsin study, whose lead author is Soshana Behrstock, depended on formative brain cells that were coaxed from blank-slate stem cells. The progenitor neural cells were genetically modified to secrete the growth factor when implanted in the striatum, a large cluster of cells in the brain that controls movement, balance and walking.

To work effectively, the cells in the striatum require dopamine, a chemical that is produced deep in the brain and that travels up nerve fibers to the striatum where it is used to keep critical cells functional. Loss of the ability to produce dopamine is the root cause of Parkinson’s, a disease that afflicts about 1.5 million people in the United States.

In the new Wisconsin study, the GDNF-producing cells transplanted in the striatum of animals with a condition like Parkinson’s showed not only that a critical drug could be delivered to the right place, but that the drug was delivered in a way that promoted its therapeutic potential. The researchers reported new nerve fiber growth in the striatum and the transport of the critical nerve growth factor GDNF from the striatum to the substantia niagra, the part of the brain that harbors the cells that produce dopamine.

"In Parkinson’s, the striatum loses fibers," Svendsen explains. But cells in the striatum exposed to GDNF in the Wisconsin study showed an ability to recover and sprout new fibers.

"It actually seems to work better in the terminal (striatum)," Svendsen says. "The bonus is it gets transported back to the substantia niagra."

The transplanted cells, according to Behrstock, survived and continued to produce GDNF in laboratory animals for up to three months.

One hurdle that needs to be overcome before such a technique could be attempted in human patients, says Svendsen, is developing a method to switch transplanted cells on or off and thus control their drug delivery capabilities. Working with engineered cells in culture, the Wisconsin group found they could switch the cells on and off using a second drug. Doing so in animal models, however, was more difficult and the issue will need to be addressed in new experiments, according to Svendsen.

The new study, Svendsen argues, proves that progenitor cells -- cells that can now be made in large quantities in the laboratory -- can be crafted to help clinicians deliver drugs where they are needed most in the body. Delivering medicine to the brain, whose blood-brain barrier effectively excludes more than 70 percent of all drugs, would be an especially valuable use for the cells. Such a new method may be useful for treating a number of neurodegenerative diseases beyond Parkinson’s, he says.

In addition to Svendsen and Behrstock, authors of the new Gene Therapy paper include Allison Ebert, Jacqueline McHugh, Stephen Vosberg, Elizabeth Capowski, Bernard Schneider and Derek Hei, all of UW-Madison; Jeffery Kordower of Rush University Medical Center; and Patrick Aebischer of the Swiss Federal Institute of Technology.

Clive Svendsen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>