Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation found that increases severity of multisystem syndrome

15.12.2005


Discovery mirrors expectations for genetic complexity of common diseases



Johns Hopkins scientists studying a rare inherited syndrome marked by eye and kidney problems, learning disabilities and obesity have discovered a genetic mutation that makes the syndrome more severe but that alone doesn’t cause it. Their report appears in the advance online edition of Nature (Dec. 4).

The new discovery about Bardet-Beidl syndrome (BBS) came from a panoply of studies -- starting with comparative genomics and experiments with yeast, and moving to experiments with zebrafish and genetic analysis of families with the syndrome -- and mirrors what experts expect for the genetically complex common diseases that kill most Americans, like diabetes, heart disease and cancer.


"Scientists are going to have to think very hard before they discount genetic variation that appears not to directly cause a disease," says the study’s leader, Nicholas Katsanis, Ph.D., associate professor in the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins. "The onus is on us to figure out how to dissect the effects of what appear to be silent genetic variants. I have a greatly renewed respect for the complexity of the genome, for the subtle ways that genes and gene products interact with each other."

Conventional wisdom says that a collection of subtle genetic variations contribute to a person’s risk of common diseases, but hunting for such subtle effects is daunting. As a result, most gene hunts have targeted relatively rare diseases that appear from their pattern in families to be fairly simple genetically.

Katsanis and his colleagues have recognized for years that BBS, although rare, is more similar to the genetic complexity of common diseases, in part because patients with this condition have extremely variable severity, even within families. The newly identified mutation, in a gene called MGC1203, is the first to affect only the severity of the syndrome. Mutations in eight other genes, all dubbed BBS genes, are known to cause the disease, often in combination with each other.

The identification of MGC1203’s role in BBS stems from the researchers’ earlier discovery that disease-causing mutations in the BBS genes disrupt the function of cilia, tiny structures that can act like antennae on cells (in the eye and brain, for instance), help cells move (e.g., in sperm), or help move fluid around cells (in the lung and brain, for example).

To build on this finding, Katsanis and his team combined results from two data-rich experiments. In one, Katsanis and members of his lab used yeast to identify proteins that interacted with the yeast’s BBS proteins. Sixty turned up in their first round of experiments. In the other, reported last year, a large research team compared the genomes of various species to identify genes involved in the function of cilia. More than 600 were found.

But by identifying which turned up in both sets of results, the researchers narrowed down the hunt to just one gene -- MGC1203.

Using standard tools of biology, the Johns Hopkins researchers determined that the MGC1203 protein is found in the same part of the cell as BBS proteins and that the MGC1203 and BBS proteins interact. Furthermore, by studying the genes of families with BBS, they also discovered that the most severely affected individuals have a single mutation in their MGC1203 gene. And zebrafish carrying mutations in both MGC1203 and BBS genes had more severe problems than zebrafish carrying only BBS gene mutations.

At first glance, the mutation appears not to affect the sequence of the MGC1203 protein, which stumped Katsanis. But because so much evidence pointed to a role for this mutation in the disease, Katsanis and postdoctoral fellow Jose Badano kept searching.

Their perseverance paid off. Like other genes, the MGC1203 gene is made of DNA, and its message is transcribed into DNA’s cousin, RNA. The RNA, in turn, can be cut apart and put back together in various ways and then "read" to build a protein, much like raw video footage can be edited to make different movies.

For MGC1203, two different RNA messages are normally produced, one that is used to make protein, and one that is destroyed by the cell, the researchers discovered with help from the Howard Hughes Medical Institute laboratory of Hopkins researcher Harry Dietz, M.D.

Badano and Katsanis then discovered that the genetic mutation in MGC1203 shifts the normal balance of the two RNA messages, increasing the amount of the destroyed message produced. That shift alone seems to be the problem, says Katsanis, who is now studying how it affects the biology of cells.

"Everyone’s cells make both messages, but people with the BBS-associated mutation make more of the version that the cell destroys right away," says Katsanis, whose laboratory also is studying the MGC1203 protein’s exact role in cells. "Somehow, this exacerbates the effects of mutations in the BBS genes."

Katsanis says that he suspects the human genome contains thousands of variants with similarly subtle effects that contribute to complex genetic diseases like obesity, diabetes and hypertension.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature04370.html
http://www.hopkinsmedicine.org/mediaII/RSSinstructions.html

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>