Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Armored’ bubbles can exist in stable non-spherical shapes

15.12.2005


Coating of tightly packed particles on bubble surface supports stresses to stabilize shape

Researchers at Harvard University have demonstrated that gas bubbles can exist in stable non-spherical shapes without the application of external force. The micron- to millimeter scale peapod-, doughnut- and sausage-shaped bubbles, created by coating ordinary gas bubbles with a tightly packed layer of tiny particles and then fusing them, are described this week on the web site of the journal Nature.

"Particles have been used to stabilize emulsions and foams for over 100 years," says lead author Anand Bala Subramaniam, a research associate in Harvard’s Division of Engineering and Applied Sciences who conducted much of the work before receiving his undergraduate degree from Harvard College last June. "However, we’ve demonstrated that not only are particles useful for making bubbles last longer, they fundamentally alter the properties of these bubbles. Instead of behaving like a fluid surface that flows to balance unequal stresses, the ’armor’ of particles on the surface of the bubbles actually supports the unequal stresses inherent in non-spherical shapes."



Surface tension gives all bubbles and drops their perfectly spherical shape by minimizing the surface area for a given volume. Ordinarily if two bubbles are fused, the product is a larger but still spherical bubble. But when particles are strongly anchored to the bubble surface and the bubbles are fused, a stable sausage shape is produced.

"The bubble wants to reduce its surface area by going back to a spherical shape, but the strong anchoring of the particles on the surface prevents their expulsion," Bala Subramaniam says. "The particles end up tightly packed, and eventually push against each other strongly, allowing the bubble surface to carry forces to support a non-spherical shape."

Although the particles are jammed, they are not bonded to each other, Bala Subramaniam adds. It is this absence of permanent bonds that allowed the researchers to reshape and remold the initially sausage-shaped bubbles into peapods, disks and donuts.

The phenomenon of irregularly shaped bubbles has been observed in nature; air bubbles in impure ocean water are often non-spherical, their shapes distorted by surface dirt. The concepts of jamming and non-spherical shapes may also be useful for understanding other systems such as biological membranes. Bala Subramaniam and his colleagues have found particle jamming on surfaces to be a general phenomenon compatible with a wide range of particle coatings, including polystyrene, polymethylmethacrylate, gold and zirconium oxide. Both particle and bubble size can vary widely, with the largest armored bubbles roughly 10,000 times the size of the smallest.

"We have provided a general explanation of why these non-spherical bubbles can be observed," says co-author Howard A. Stone, Bala Subramaniam’s advisor and the Vicky Joseph Professor of Engineering and Applied Mathematics at Harvard. "Bubbles are engineered into many consumer products. The ability to alter the shapes of bubbles and liquid drops in products like ice cream or shaving foams or creams may provide a means to alter the consistency or texture of these products. The non-spherical bubbles could also find use as vessels for delivering drugs, vitamins or flavors."

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>