New discovery may improve treatment of neurodegenerative diseases and type 2 diabetes

Proteins are large molecular chains that move around cells carrying vital information on the activity of the organism. The role of each protein depends largely on the form it takes, but the proteins occasionally lose this form when they collide and bind with other proteins. They aggregate, and lose their function, growing continuously to form what are known as amyloid fibres. This causes neurodegenerative diseases, such as Parkinson’s, Alzheimer’s, and forms of spongiform encephalopathy, such as mad cow disease (BSE) and its human form, Creuzfeldt-Jacob disease. It also produces the pancreatic malfunctions that cause type 2 diabetes.

A team of scientists from the Universitat Autònoma de Barcelona, led by the researcher Salvador Ventura, has developed a method that allows those parts of the proteins that set off aggregation to be identified. Using this method one is able to identify the precise zones of each protein that force these proteins to bond, aggregate and form amyloid fibres. The scientists have tested the method with different proteins involved in conformational diseases, while identifying zones that were already known for their role in protein aggregation and the diseases mentioned above.

According to Salvador Ventura, their method “identifies potential therapeutic targets against illnesses caused by protein aggregation, such as Alzheimer’s, Parkinson’s and type 2 diabetes. It allows a more precise identification of the targets, meaning that in theory they can be attacked more effectively”.

The method created by the UAB researchers identifies the “hot spots” that cause protein aggregation both in globular proteins, which are folded chains, and in unfolded chains. This method may be extremely useful for designing new drugs to fight illnesses related to protein aggregation. For unfolded chains, the method can be used to design drugs that act by completely covering and shielding the “hot spots” identified through the new method so that they cannot come into contact with other proteins and aggregate. If the proteins are globular, the aggregation “hot spots” are usually protected on the inside, and are not dangerous unless they are accidentally exposed to the outside. In this case the drugs must be aimed at stabilising the structure of the protein, while preventing the “hot spots” from becoming exposed.

The research, recently published in BMC Structural Biology, was carried out by Natalia Sánchez de Groot, Irantzu Pallarés, Francesc Xavier Avilés, Josep Vendrell and Salvador Ventura, of the Department of Biochemistry and Molecular Biology and the Institute of Biotechnology and Biomedicine (IBB) at the Universitat Autònoma de Barcelona.

Media Contact

Octavi López Coronado alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors