Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique helps researchers determine amino-acid charge

15.12.2005


Measurements of the ion-current through the open state of a membrane-protein’s ion channel have allowed scientists at the University of Illinois at Urbana-Champaign to obtain a detailed picture of the effect of the protein microenvironment on the affinity of ionizable amino-acid residues for protons.

The findings, reported in the Dec. 15 issue of Nature, are expected to be welcome news for chemists and biophysicists, both experimentalists and theoreticians, because they have previously relied on theoretical estimations to predict protonation states -- whether an amino acid is charged or not. Appropriate experimental benchmarks also had been lacking.

All cells have membrane proteins that form channels to allow water and/or ions to pass through. Malfunctions have been linked to such problems as hypertension, abnormal insulin secretion, abnormal heart conditions and brain seizures. As a result, these membrane proteins are often targeted by drug treatments.



Previous approaches didn’t provide sufficient resolution to let researchers accurately detect the association and dissociation of protons to and from individual amino-acid residues in real time.

Using the patch-clamp technique, the researchers were able to probe the electrostatic properties of the inner lining of the ion-channel’s pore, and, from there, they inferred the rotational angle of the pore-lining alpha-helices in the open state.

In this case, researchers focused on the muscle nicotinic acetylcholine receptor, a membrane protein that mediates voluntary muscle contraction.

"Our paper has implications that are specific to this receptor, but many of the findings can be extended to several other membrane proteins," said Claudio Grosman, a professor of molecular and integrative physiology at Illinois.

"We are working with the open state of the ion channel, and we now know how the helices that line the pore are oriented. This was not known before," Grosman said. "Previous work has told us how the helices are oriented in the closed state."

A major problem in understanding the relationship between structure and function in proteins, and the impact that electrostatics have on them, Grosman said, is not knowing the protonation state of ionizable residues. Protons, he added, are so small that they cannot be detected even with X-ray crystallographic approaches.

For the study, Grosman and colleagues used protein engineering. They mutated each residue of the pore’s lining with basic amino-acid residues, which can acquire a positive charge upon binding protons and become neutral upon releasing them.

"One thing is the proton affinity of an amino-acid residue when the amino acid is dissolved in a lot of water in, say, a glass beaker; another thing is the affinity for protons in the complex microenvironment presented by a membrane protein," Grosman said. "For the first time, we were able to measure proton-transfer events at the single-proton, single-amino-acid level, in real time. Chemists will be happy to see this."

In addition to providing an extensive set of proton-affinity values for basic residues, which differed greatly from those found in a "glass beaker," the findings also discounted a long-held theory that the rotation of the pore-lining helices underlie the mechanism of opening and closing of the nicotinic receptor ion channel. The data, Grosman said, indicate that such rotation is minimal, if any.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>