Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique helps researchers determine amino-acid charge

15.12.2005


Measurements of the ion-current through the open state of a membrane-protein’s ion channel have allowed scientists at the University of Illinois at Urbana-Champaign to obtain a detailed picture of the effect of the protein microenvironment on the affinity of ionizable amino-acid residues for protons.

The findings, reported in the Dec. 15 issue of Nature, are expected to be welcome news for chemists and biophysicists, both experimentalists and theoreticians, because they have previously relied on theoretical estimations to predict protonation states -- whether an amino acid is charged or not. Appropriate experimental benchmarks also had been lacking.

All cells have membrane proteins that form channels to allow water and/or ions to pass through. Malfunctions have been linked to such problems as hypertension, abnormal insulin secretion, abnormal heart conditions and brain seizures. As a result, these membrane proteins are often targeted by drug treatments.



Previous approaches didn’t provide sufficient resolution to let researchers accurately detect the association and dissociation of protons to and from individual amino-acid residues in real time.

Using the patch-clamp technique, the researchers were able to probe the electrostatic properties of the inner lining of the ion-channel’s pore, and, from there, they inferred the rotational angle of the pore-lining alpha-helices in the open state.

In this case, researchers focused on the muscle nicotinic acetylcholine receptor, a membrane protein that mediates voluntary muscle contraction.

"Our paper has implications that are specific to this receptor, but many of the findings can be extended to several other membrane proteins," said Claudio Grosman, a professor of molecular and integrative physiology at Illinois.

"We are working with the open state of the ion channel, and we now know how the helices that line the pore are oriented. This was not known before," Grosman said. "Previous work has told us how the helices are oriented in the closed state."

A major problem in understanding the relationship between structure and function in proteins, and the impact that electrostatics have on them, Grosman said, is not knowing the protonation state of ionizable residues. Protons, he added, are so small that they cannot be detected even with X-ray crystallographic approaches.

For the study, Grosman and colleagues used protein engineering. They mutated each residue of the pore’s lining with basic amino-acid residues, which can acquire a positive charge upon binding protons and become neutral upon releasing them.

"One thing is the proton affinity of an amino-acid residue when the amino acid is dissolved in a lot of water in, say, a glass beaker; another thing is the affinity for protons in the complex microenvironment presented by a membrane protein," Grosman said. "For the first time, we were able to measure proton-transfer events at the single-proton, single-amino-acid level, in real time. Chemists will be happy to see this."

In addition to providing an extensive set of proton-affinity values for basic residues, which differed greatly from those found in a "glass beaker," the findings also discounted a long-held theory that the rotation of the pore-lining helices underlie the mechanism of opening and closing of the nicotinic receptor ion channel. The data, Grosman said, indicate that such rotation is minimal, if any.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>