Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antidepressant drug increases ’brain’s own cannabis’

14.12.2005


Researchers have discovered a new drug that raises the level of endocannabinoids--the ’brain’s own cannabis’--providing anti-depressant effects. The new research published in this week’s Proceedings of the National Academy of Sciences (PNAS), suggests the new drug, called URB597, could represent a safer alternative to cannabis for the treatment of pain and depression, and open the door to new and improved treatments for clinical depression--a condition that affects around 20% of Canadians.



In preclinical laboratory tests researchers found that URB597 increased the production of endocannabinoids by blocking their degradation, resulting in measurable antidepressant effects. "This is the first time it has been shown that a drug that increases endocannabinoids in the brain can improve your mood," says the lead investigator Dr. Gabriella Gobbi, an MUHC and Université de Montréal researcher.

Endocannabinoids are chemicals released by the brain under certain conditions, like exercise; they stimulate specific brain receptors that can trigger feelings of well-being. The researchers, which included scientists from the University of California at Irvine, were able to measure serotonin and noradrenaline activity as a result of the increased endocannabinoids, and also conducted standard experiments to gauge the ’mood’ of their subjects and confirm their findings.


"The results were similar to the effect we might expect from the use of commonly prescribed antidepressants, which are effective on only around 30% of the population," explains Dr. Gobbi. "Our discovery strengthens the case for URB597 as a safer, non-addictive, non-psychotropic alternative to cannabis for the treatment of pain and depression and provides hope for the development of an alternate line of antidepressants, with a wider range of effectiveness."

Cannabis has been known for its anti-depressant and pain-relief effects for many years, but the addictive nature and general health concerns of cannabis use make this drug far from ideal as a medical treatment. The active ingredient in cannabis--THC (Tetrahydrocannabinol)--stimulates cannabinoid receptors.

Funding for this study was provided by the Fonds de la Recherche en Santé du Québec (FRSQ), the Canadian Psychiatric Research Foundation (CPRF), the National Institute on Drug Abuse (NIDA) and an MUHC fellowship.

Ian Popple | EurekAlert!
Further information:
http://www.muhc.ca

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>