Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone quality regulator identified, suggests drug target

14.12.2005


UCSF scientists have determined that the quality of bone matrix, a key component of bone, is regulated by a molecule known as transforming growth factor beta. The finding, they say, suggests a possible target for preventing and treating bone fractures associated with aging and genetic diseases.



The study will be reported later this week in the Online Early Edition of Proceedings of the National Academy of Sciences (PNAS).

The ability of bone to resist damage depends on the mass, or quantity, of bone, its architecture and the quality of bone matrix, the mineralized material between cells.


Several molecular factors have been shown to regulate the mass and architecture of bone. So far, however, none have been shown to regulate bone matrix, which is responsible for bone elasticity and toughness.

There has been significant disagreement about whether the quality of bone matrix varies among individuals and, if it does, whether it could be altered for therapeutic reasons. In any case, until now, scientists have lacked a strategy for measuring its quality and teasing out its impact, says senior study author Tamara Alliston, PhD, UCSF assistant adjunct professor of Cell and Tissue Biology.

In the current study, the team explored whether transforming growth factor beta (TGF-ß) regulates the properties of bone matrix because there were hints that it might. TGF-ß is known to play a role in the development of osteoblasts, cells that produce bone matrix.

The researchers carried out their evaluation in five sets of mice genetically engineered to produce differing levels of TGF-ß signaling within osteoblasts, and, for comparison, in normal, or ’wild type’ mice. After the animals had been euthanized, the team utilized highly sensitive instruments developed in the materials sciences -- atomic-force microscopy, x-ray tomography and micro-Raman spectroscopy -- to measure the properties of bone matrix independent of bone mass and architecture. They also compared the bones’ resistance to fracture in a bending test.

The results were notable, according to Alliston. In animals genetically engineered to produce high levels of TGF-ß, the measurements of bone matrix indicated increased susceptibility to fracture. The matrix was less elastic, less hard and contained lower levels of the mineral calcium phosphate. In addition, the animals’ bones were less resistant to fracture in the bending test.

In contrast, in animals with low levels of TGF-ß the bone matrix was more elastic, harder, had higher mineral concentration and the bone overall had increased mass. In addition, the bones were more resistant to fracture in the bending test.

The bones studied included the femur, tibia and calvarial parietal bones.

"This is the first evidence that properties of bone matrix can be regulated by a growth factor and that by modifying the TGF-ß pathway, specifically, these properties can be controlled," says Alliston.

The study suggests, she says, that TGF-ß could be targeted for clinical intervention in patients. "By decreasing TGF-ß signaling at the relevant site in the body, we may be able to improve the quality of bone to either prevent the damage that occurs in osteoarthritis and osteoporosis, or improve the quality and speed of bone repair following bone fracture, joint implantation, dental implants or bone grafting.

Aging baby boomers

This strategy could prove particularly useful for aging baby boomers, as joint-replacement therapy often fails over the course of years, says Alliston. Hip replacements, for example, often fail within 15 years, and a second replacement takes a significant toll on the body. A person receiving a hip replacement at age 55 or 60 generally will require a second one by age 70.

"If we could decrease the production of TGF-ß at the site of the transplant, we might be able to strengthen the quality of bone being formed," says the lead author of the study, Guive Balooch, BA, in the UCSF Graduate Program in Oral and Craniofacial Sciences and Division of Bioengineering.

Of note, clinical trials are being developed to test whether a drug that inhibits TGF-ß will prevent cancers from metastasizing in patients, says co-senior author Rik Derynck, PhD, director of the UCSF Program in Craniofacial and Mesenchymal Biology, UCSF Department of Cell and Tissue Biology, and co-director of the UCSF Institute of Stem Cell and Tissue Biology. This separate line of investigation involving TGF-ß builds on evidence that cancer cells "up regulate" or increase, TGF-ß when they decide to metastasize. Scientists hypothesize that the increased levels of TGF-ß enhance the ability of cancer cells to invade other tissues.

Such a drug could also prove useful in modifying bone quality. It could even prove useful in treating the bone deterioration that often occurs when cancers metastasize to the bone, he says.

It is worth noting that the findings do not detract from the theory that bone mass, or quantity, is an important determinant of bones’ ability to withstand fracture, says Alliston. One set of genetically engineered mice in the study had higher quality of bone matrix and lower bone mass -- and the bone fractured more easily.

The overall finding, she says, was that a reduction in TGF-ß signaling enhanced the quality of bone matrix, as well as the bone mass, collectively enabling the bone to better resist fracture.

The team is now exploring the functional significance of the bone matrix properties. "We have identified several factors we think are important, and are in the process of defining their contribution to fracture-resistance," she says.

Risk of bone fractures

Susceptibility to bone fractures and bone deterioration increases with age, often due to metabolic changes. Significant bone loss is diagnosed as osteoporosis. Deterioration in the bone and cartilage of joints is known as osteoarthritis.

Some diseases of bone degeneration are genetic, such as osteogenesis imperfecta, which is characterized by brittleness of bone, rather than loss of bone, and osteopetrosis, in which bones become overly dense, leading to a variety of significant disorders, including blindness, deafness, pathological fractures, and infections.

The new finding offers provocative hints that defects in TGF-ß signaling could play a role in some genetic diseases. Building on ongoing work in the lab, the team is now exploring strategies that could lead them toward TGF-ß’s mechanism of action.

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>