Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flatworm genes may provide insights into human diseases, researchers say

14.12.2005


Could vital information about many human diseases be deciphered from genes inside freshwater flatworms? A definitive yes is not the answer yet, but research at the University of Illinois at Urbana-Champaign has provided an important advance for pursuing both that idea and the biology of stem cells.



In a paper appearing on line this week ahead of regular publication in the Proceedings of the National Academy of Sciences, researchers report the sequencing and analysis of 27,161 expressed sequence tags (ESTs) of the sexually reproducing strain of the planarian Schmidtea mediterranea.

Not only were 66 percent of them similar to sequences already in public databases, the researchers found 142 of 287 genes associated with human diseases. Because the ESTs they studied represent only about one-half of the total, "it seems likely that the vast majority of human disease genes will have homologues in planarians," the scientists wrote.


"One of the striking things we found is that when we look at planarian genes, we see a group that is conserved between planarians and mammals that is not found in Drosophila or C. elegans," said Phillip A. Newmark, a professor of cell and developmental biology at Illinois. "We speculate that these conserved sequences may play roles in processes such as long-term tissue maintenance and cell turnover that are likely less important for short-lived organisms like nematodes and insects," wrote Newmark and colleagues.

Drosophila melanogaster and C. elegans (Caenorhabditis elegans) are standard model invertebrates used in biology. "The fact that they don’t have some of the genes that planarians share with mammals says that planarians will be an important, complementary model for studying gene function," Newmark said.

On a more basic level, the work by Newmark and colleagues will aid the planarian genome-sequencing project being done at Washington University in St. Louis.

ESTs are short sequences of DNA produced by the reverse transcription of messenger RNA into complementary DNA. Sequencing and categorizing ESTs allow researchers to rapidly identify genes.

Previously sequenced ESTs came from asexual planarians.

Sexual planarians don’t develop reproductive structures until after they’ve reached adulthood, when their stem cells go to work in a process known as epigenetic germ cell specification. Asexual planarians reproduce by transverse fission -- by splitting into pieces and regenerating; they do not develop reproductive structures.

Both planarian strains, however, can regenerate themselves when split. By comparing the machinery of the two strains, basic knowledge about stem and germ cell activity might be enhanced, Newmark said. "Many of the genes in this collection are going to be important for studying stem cell biology and regeneration," he said.

The ESTs identified by Newmark’s team came from two developmental stages of S. mediterranea. The 27,000-plus ESTs represent some 10,000 unique transcripts, or individual sequences of RNA. Of 53 genes linked to reproduction, 87 percent were expressed in reproductive organs.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>