Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flatworm genes may provide insights into human diseases, researchers say

14.12.2005


Could vital information about many human diseases be deciphered from genes inside freshwater flatworms? A definitive yes is not the answer yet, but research at the University of Illinois at Urbana-Champaign has provided an important advance for pursuing both that idea and the biology of stem cells.



In a paper appearing on line this week ahead of regular publication in the Proceedings of the National Academy of Sciences, researchers report the sequencing and analysis of 27,161 expressed sequence tags (ESTs) of the sexually reproducing strain of the planarian Schmidtea mediterranea.

Not only were 66 percent of them similar to sequences already in public databases, the researchers found 142 of 287 genes associated with human diseases. Because the ESTs they studied represent only about one-half of the total, "it seems likely that the vast majority of human disease genes will have homologues in planarians," the scientists wrote.


"One of the striking things we found is that when we look at planarian genes, we see a group that is conserved between planarians and mammals that is not found in Drosophila or C. elegans," said Phillip A. Newmark, a professor of cell and developmental biology at Illinois. "We speculate that these conserved sequences may play roles in processes such as long-term tissue maintenance and cell turnover that are likely less important for short-lived organisms like nematodes and insects," wrote Newmark and colleagues.

Drosophila melanogaster and C. elegans (Caenorhabditis elegans) are standard model invertebrates used in biology. "The fact that they don’t have some of the genes that planarians share with mammals says that planarians will be an important, complementary model for studying gene function," Newmark said.

On a more basic level, the work by Newmark and colleagues will aid the planarian genome-sequencing project being done at Washington University in St. Louis.

ESTs are short sequences of DNA produced by the reverse transcription of messenger RNA into complementary DNA. Sequencing and categorizing ESTs allow researchers to rapidly identify genes.

Previously sequenced ESTs came from asexual planarians.

Sexual planarians don’t develop reproductive structures until after they’ve reached adulthood, when their stem cells go to work in a process known as epigenetic germ cell specification. Asexual planarians reproduce by transverse fission -- by splitting into pieces and regenerating; they do not develop reproductive structures.

Both planarian strains, however, can regenerate themselves when split. By comparing the machinery of the two strains, basic knowledge about stem and germ cell activity might be enhanced, Newmark said. "Many of the genes in this collection are going to be important for studying stem cell biology and regeneration," he said.

The ESTs identified by Newmark’s team came from two developmental stages of S. mediterranea. The 27,000-plus ESTs represent some 10,000 unique transcripts, or individual sequences of RNA. Of 53 genes linked to reproduction, 87 percent were expressed in reproductive organs.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>