Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRAF3 protein is a key part of the early immune response to viruses

14.12.2005


Study using novel protein purification strategy shows that TRAF3 triggers interferon release while curbing inflammation, according to St. Jude



A protein called TRAF3, with a previously unknown job in immune cells, is actually a key part of a mechanism that triggers release of anti-virus molecules called type I interferons (IFNs) as part of the body’s rapid response against these invaders, according to investigators that include a scientist continuing this work at St. Jude Children’s Research Hospital.

The discovery of TRAF3’s role helps to explain how immune cells called macrophages use sensing devices called Toll-like receptors (TLRs) to orchestrate just the right response to different types of infections. TLRs are on the outer membranes of macrophages and respond to germs by triggering the production of proteins called cytokines. Various cytokines regulate different biological functions that are important during immune responses, such as inflammation and protection against viruses. In addition, some cytokines contain anti-inflammatory activities, which curb potentially harmful inflammation.


The researchers showed that TRAF3 is not only essential for production of type I interferons, but also for production of IL-10, a protein that prevents inflammation. In fact, the team showed that cells lacking the gene for TRAF3 can’t produce IL-10 and instead over-produce proteins that cause inflammation.

A report on these results appears online in the November 23 prepublication issue of Nature.

"The discovery that TRAF3 is also recruited to Toll-like receptors was important," says Hans Haecker, M.D., Ph.D., the first author of the paper and currently an assistant member of the St. Jude Department of Infectious Diseases. "It filled in an important piece of the puzzle of the front-line immune response to viruses that we didn’t even realize was missing. Further research using this simple system will help solve the mystery of how macrophages can pick and choose among different strategies for combating specific infections." Haecker was at the Technical University of Munich and the University of California, San Diego, when he worked on this project.

Researchers already knew that TLRs use proteins called adapters to help them recruit small armies of signaling molecules that trigger the right response by the immune cell to invaders, such as viruses. They also knew that a protein called MyD88 was one of the adaptors that help to recruit these armies; and that one of the first proteins in the signaling army recruited to MyD88 was the protein TRAF6. But what was unclear was the exact series of steps that occurred during the recruitment of the full army of signaling molecules by TLRs.

Therefore, the team developed a novel strategy to study how TLRs recruit their armies of signaling molecules. The team inserted into macrophages an artificial gene that coded for the TLR adaptor MyD88 fused to a molecule called gyrase B. In the presence of a drug called coumermycin, gyrase B, these molecules bind together in pairs. This ’pair forming’ activity of gyrase B triggered a similar formation of pairs of the MyD88 molecules that were fused to gyrase B. This reaction, which produced pairs of MyD88-gyrase B complexes, then triggers recruitment of the rest of the army of proteins that form the macrophages’s signaling pathway, according to Haecker.

During these studies the researchers discovered that TRAF3 as well as TRAF6 is recruited to such adaptors. In addition to demonstrating that TRAF3 was recruited by MyD88 to generate type I interferons, the researchers showed that TRAF3 can be recruited by another important adaptor, called TRIF, which is used by some TLRs. This demonstrated that TRAF3 has a general role in controlling the TLR-dependent type I interferon and IL-10 response.

Results of the study suggest that the specific type of immune response triggered by TLR signaling depends on the relative amounts of TRAF6 and TRAF3 initially recruited, and the different signaling proteins each of those proteins subsequently recruit to the growing army.

The TLR system is part of the body’s innate immune response. Innate immunity is a primitive type of defense that does not use antibodies. Instead, immune cells that are part of innate immunity act as an early-warning system that attempts to stop infections quickly so that the other, more complex immune responses don’t have to be called into play.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>