Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TRAF3 protein is a key part of the early immune response to viruses

14.12.2005


Study using novel protein purification strategy shows that TRAF3 triggers interferon release while curbing inflammation, according to St. Jude



A protein called TRAF3, with a previously unknown job in immune cells, is actually a key part of a mechanism that triggers release of anti-virus molecules called type I interferons (IFNs) as part of the body’s rapid response against these invaders, according to investigators that include a scientist continuing this work at St. Jude Children’s Research Hospital.

The discovery of TRAF3’s role helps to explain how immune cells called macrophages use sensing devices called Toll-like receptors (TLRs) to orchestrate just the right response to different types of infections. TLRs are on the outer membranes of macrophages and respond to germs by triggering the production of proteins called cytokines. Various cytokines regulate different biological functions that are important during immune responses, such as inflammation and protection against viruses. In addition, some cytokines contain anti-inflammatory activities, which curb potentially harmful inflammation.


The researchers showed that TRAF3 is not only essential for production of type I interferons, but also for production of IL-10, a protein that prevents inflammation. In fact, the team showed that cells lacking the gene for TRAF3 can’t produce IL-10 and instead over-produce proteins that cause inflammation.

A report on these results appears online in the November 23 prepublication issue of Nature.

"The discovery that TRAF3 is also recruited to Toll-like receptors was important," says Hans Haecker, M.D., Ph.D., the first author of the paper and currently an assistant member of the St. Jude Department of Infectious Diseases. "It filled in an important piece of the puzzle of the front-line immune response to viruses that we didn’t even realize was missing. Further research using this simple system will help solve the mystery of how macrophages can pick and choose among different strategies for combating specific infections." Haecker was at the Technical University of Munich and the University of California, San Diego, when he worked on this project.

Researchers already knew that TLRs use proteins called adapters to help them recruit small armies of signaling molecules that trigger the right response by the immune cell to invaders, such as viruses. They also knew that a protein called MyD88 was one of the adaptors that help to recruit these armies; and that one of the first proteins in the signaling army recruited to MyD88 was the protein TRAF6. But what was unclear was the exact series of steps that occurred during the recruitment of the full army of signaling molecules by TLRs.

Therefore, the team developed a novel strategy to study how TLRs recruit their armies of signaling molecules. The team inserted into macrophages an artificial gene that coded for the TLR adaptor MyD88 fused to a molecule called gyrase B. In the presence of a drug called coumermycin, gyrase B, these molecules bind together in pairs. This ’pair forming’ activity of gyrase B triggered a similar formation of pairs of the MyD88 molecules that were fused to gyrase B. This reaction, which produced pairs of MyD88-gyrase B complexes, then triggers recruitment of the rest of the army of proteins that form the macrophages’s signaling pathway, according to Haecker.

During these studies the researchers discovered that TRAF3 as well as TRAF6 is recruited to such adaptors. In addition to demonstrating that TRAF3 was recruited by MyD88 to generate type I interferons, the researchers showed that TRAF3 can be recruited by another important adaptor, called TRIF, which is used by some TLRs. This demonstrated that TRAF3 has a general role in controlling the TLR-dependent type I interferon and IL-10 response.

Results of the study suggest that the specific type of immune response triggered by TLR signaling depends on the relative amounts of TRAF6 and TRAF3 initially recruited, and the different signaling proteins each of those proteins subsequently recruit to the growing army.

The TLR system is part of the body’s innate immune response. Innate immunity is a primitive type of defense that does not use antibodies. Instead, immune cells that are part of innate immunity act as an early-warning system that attempts to stop infections quickly so that the other, more complex immune responses don’t have to be called into play.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>