Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeroing in on progeria: How mutant lamins cause premature aging

14.12.2005


News from the Cell Biology Meeting in San Francisco



Children diagnosed with Hutchinson-Gilford Progeria Syndrome (HGPS) race through life against an unfairly fast clock. Cases are extremely rare--one in 8 million births--but time plays cruel tricks on HGPS newborns. They begin life in apparent good health but by six–eighteen months develop the first signs of premature aging, including hair loss, stiff joints, osteoporosis and atherosclerosis. Typically, the HGPS race through life runs out by age 13, finished by heart attacks or strokes.

But progeria researchers made a breakthrough in 2003, tracing HGPS to a spontaneous mutation in a gene encoding an important structural component of the cell nucleus, the organelle in which our DNA is stored, read out, and copied. As the so-called "Mothership of the Human Genome," the cell nucleus must keep all this vital genetic information safe but accessible inside a strong protective envelope. The inner membrane of the nuclear envelope is lined by tough but adaptable proteins called lamins. The mutated gene for HGPS affected the nuclear lamin A (LA) protein.


The discovery that progeria was a "laminopathy," a disorder caused by a nuclear lamin failure, gave HGPS families new hope because it gave clinical researchers new targets for drug or other interventions. But the discovery gave cell biologists a new problem. If HGPS was cellular aging run wild, was it a warp-speed version of "normal" aging? If so, what was it about the mutated LA protein behind HGPS that causes cells to age so rapidly?

In work presented Tuesday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco, Robert Goldman and his collaborators at the Northwestern University’s Feinberg School of Medicine and elsewhere describe how they’ve zeroed in on the defective lamin A proteins linked to HGPS. While lamins polymerize into fibrous structures that hold up the "walls" of the nucleus, they also serve as an internal scaffold for the complex machinery involved in DNA replication and gene expression. It was in this later role that the researchers have been looking for clues to premature and possibly to normal aging.

Reporting on two sets of experiments, Goldman et al say that the mutant LA protein seems to interfere with key controls of gene expression and of the cell cycle. The first study discovered that the most common HGPS-linked mutant LA protein alters the organization of regions of chromosomes that are critically important in regulating gene expression. These so-called heterochromatic regions include the inactive X (Xi) chromosome found in normal female cells. One of the hallmarks of Xi heterochromatin is its association with proteins known as methylated histones. In the cells from a female HGPS patient, the researchers found that levels of this molecular hallmark and of an enzyme required for histone methylation of Xi are sharply lower.

The second set of results reveals mutant LA proteins turning up in the wrong place--too tightly linked to the membranes of the nuclear envelope--to be of much help during key stages of the cell cycle. The researchers believe that this localization failure of mutated LA proteins would severely compromise the ability of HGPS cells to engage in normal DNA replication, a probable factor in their rapid march to premature senescence. Whether similar missteps and miscues by nuclear lamins are part of "normal" human aging is the question that draws researchers onward, says Goldman.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>