Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zeroing in on progeria: How mutant lamins cause premature aging

14.12.2005


News from the Cell Biology Meeting in San Francisco



Children diagnosed with Hutchinson-Gilford Progeria Syndrome (HGPS) race through life against an unfairly fast clock. Cases are extremely rare--one in 8 million births--but time plays cruel tricks on HGPS newborns. They begin life in apparent good health but by six–eighteen months develop the first signs of premature aging, including hair loss, stiff joints, osteoporosis and atherosclerosis. Typically, the HGPS race through life runs out by age 13, finished by heart attacks or strokes.

But progeria researchers made a breakthrough in 2003, tracing HGPS to a spontaneous mutation in a gene encoding an important structural component of the cell nucleus, the organelle in which our DNA is stored, read out, and copied. As the so-called "Mothership of the Human Genome," the cell nucleus must keep all this vital genetic information safe but accessible inside a strong protective envelope. The inner membrane of the nuclear envelope is lined by tough but adaptable proteins called lamins. The mutated gene for HGPS affected the nuclear lamin A (LA) protein.


The discovery that progeria was a "laminopathy," a disorder caused by a nuclear lamin failure, gave HGPS families new hope because it gave clinical researchers new targets for drug or other interventions. But the discovery gave cell biologists a new problem. If HGPS was cellular aging run wild, was it a warp-speed version of "normal" aging? If so, what was it about the mutated LA protein behind HGPS that causes cells to age so rapidly?

In work presented Tuesday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco, Robert Goldman and his collaborators at the Northwestern University’s Feinberg School of Medicine and elsewhere describe how they’ve zeroed in on the defective lamin A proteins linked to HGPS. While lamins polymerize into fibrous structures that hold up the "walls" of the nucleus, they also serve as an internal scaffold for the complex machinery involved in DNA replication and gene expression. It was in this later role that the researchers have been looking for clues to premature and possibly to normal aging.

Reporting on two sets of experiments, Goldman et al say that the mutant LA protein seems to interfere with key controls of gene expression and of the cell cycle. The first study discovered that the most common HGPS-linked mutant LA protein alters the organization of regions of chromosomes that are critically important in regulating gene expression. These so-called heterochromatic regions include the inactive X (Xi) chromosome found in normal female cells. One of the hallmarks of Xi heterochromatin is its association with proteins known as methylated histones. In the cells from a female HGPS patient, the researchers found that levels of this molecular hallmark and of an enzyme required for histone methylation of Xi are sharply lower.

The second set of results reveals mutant LA proteins turning up in the wrong place--too tightly linked to the membranes of the nuclear envelope--to be of much help during key stages of the cell cycle. The researchers believe that this localization failure of mutated LA proteins would severely compromise the ability of HGPS cells to engage in normal DNA replication, a probable factor in their rapid march to premature senescence. Whether similar missteps and miscues by nuclear lamins are part of "normal" human aging is the question that draws researchers onward, says Goldman.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>