Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Kidnapped: Colon cancer seizes hapless nerve growth protein


News from the Cell Biology Meeting in San Francisco

Cancer works its malignant will by standing cell life on its head. No form of cancer is better at flipping normal cell mechanisms for growth and movement into sinister contraptions for evasion and invasion than aggressive colorectal tumors. Kidnapping is a particular talent, especially along the cancer’s invasive edges. That’s where Avri Ben-Ze’ev and colleagues at the Weizmann Institute of Science in Israel and elsewhere found an unlikely hostage to colorectal cancer in L1, a protein more commonly produced by growing nerve cells. Their findings were presented Tuesday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

Ben-Ze’ev and Nancy Gavert, a surgeon and current Ph.D. student--were led to the kidnapped nerve cell protein, L1, by their long-term interest in beta-catenin, a cadherin-binding protein, known to also activate genes in various types of cancer. In previous studies, the Ben-Ze’ev lab identified several beta-catenin target genes that are involved in development of malignant melanoma and colon cancer. The co-option of L1, though, was a surprise.

Analyzing patient samples of human colorectal cancer, the Ben-Ze’ev lab (in collaboration with Thomas Brabletz of the University of Erlangen in Germany) discovered L1 in large quantities exclusively in cancer cells at the aggressive and invasive front of tumors. In an additional surprise finding, the scientists found concentrations of nerve cell bundles, containing L1, located next to clusters of colon cancer cells that contain L1 on their surface. Localized on the cell membrane, L1 can serve both as a lock and a key in adhesion between cells: as a lock, it binds to L1 receptor molecules on the surface of like cells; as a key, it binds to different surface receptors of other cell types.

"That’s what makes L1 so dangerous in tumors," says Ben-Ze’ev. "L1’s special abilities in helping nerve cells wire up through intercellular space are hijacked by aggressive tumors to sharpen their invasive edge. The L1 protein makes them better at moving around and penetrating the body’s connective tissues, as well as more resistant to adverse conditions during growth and metastasis. The discovery of L1’s unwitting role in tumor cell motility and invasion may have important implications for diagnosing colon cancer and for designing new therapies," reports Ben-Ze’ev.

John Fleischman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>