Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scythe balances life and death during development

14.12.2005


Scythe protein is critical to the normal development of the lungs, kidney and brain, according to St. Jude



A protein called Scythe determines which cells live and which die during the growth and development of the mammalian embryo, according to investigators at St. Jude Children’s Research Hospital.

The St. Jude study is the first to show that Scythe plays a critical role during development of mammals by selectively regulating when and where specific cells either proliferate or undergo apoptosis, the process by which cells self-destruct. Understanding exactly how Scythe balances apoptosis with cell proliferation could provide significant insights into how organs develop in the growing embryo, researchers said.


The St. Jude team showed in laboratory models that in the absence of Scythe the lungs, kidneys and brains develop abnormally and the embryos cannot survive. These defects were caused by the loss of control over both the multiplication of some cells and the process of apoptosis, in which cells self-destruct.

Normally, there is a balance between life and death in the embryo as the various parts of specific organs get "sculpted" out of the growing mass of cells and some cells are eliminated, according to Peter McKinnon, Ph.D., an associate member of the St. Jude Department of Genetics and Tumor Cell Biology. But cells in certain organs of models lacking both copies of the Scythe gene (Scythe-/-) either failed to receive or failed to respond to signals triggering proliferation or apoptosis. The resulting organs were malformed and unable to function properly, he said. McKinnon is the senior author of a report on this work that appears in the December issue of Molecular and Cellular Biology.

"Scythe is critical to the embyro’s ability to survive and develop normally," McKinnon said. "The protein appears to regulate both apoptosis and the multiplication of cells in a way that we don’t yet understand."

Previous work by other researchers suggests that the Scythe protein might work by regulating the folding and activity of the molecules that make up the signaling pathway that controls apoptosis. Scythe was also known to interact with another protein called Reaper to control development of the fruit fly. Therefore, the St. Jude team developed laboratory models lacking both copies of Scythe to study what happens in the gene’s absence. The scientists discovered that major defects in lung development appeared late in the process of embryo development.

Specifically, the lungs were very small and their branching airways were underdeveloped. In addition, there were almost no alveoli--the small air sacs at the end of the smallest airways. Moreover, the kidneys failed to form properly or did not form at all. This showed that Scythe is required for development of both the lung and kidney. The Scythe-/- model also often failed to develop a normal brain. In the absence of Scythe some parts of the brain grew abnormally large and contained excessive amounts of water.

Finally, the St. Jude team showed that cells from the Scythe-/- model responded to ionizing radiation and hydrogen peroxide by undergoing apoptosis like normal cells. However, these cells were more resistant to menadiaone and thapsigarin--two chemicals known to trigger apoptosis. But when the investigators put Scythe genes back into the cells, they became sensitive to these treatments and underwent apoptosis.

"These chemicals affect the movement of calcium inside a special structure where proteins are made," McKinnon said. "This showed that Scythe helps trigger apoptosis in specific circumstances. Further studies are currently underway to elucidate this process."

Part of the Scythe molecule resembles that of molecules known to be involved with protein destruction, according to Fabienne Desmots, the postdoctoral researcher in the Department of Genetics and Tumor Cell Biology who did much of the work on this project. This finding suggests that Scythe might help to regulate the signaling molecules that are involved in either apoptosis or cell proliferation.

"By having a hand in controlling the levels of key proteins involved in these processes, Scythe appears to indirectly balance life and death decisions in the growing embryo," said Desmots, who is the first author of the paper. Desmots is now at the University of Rennes in France.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>