Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scythe balances life and death during development

14.12.2005


Scythe protein is critical to the normal development of the lungs, kidney and brain, according to St. Jude



A protein called Scythe determines which cells live and which die during the growth and development of the mammalian embryo, according to investigators at St. Jude Children’s Research Hospital.

The St. Jude study is the first to show that Scythe plays a critical role during development of mammals by selectively regulating when and where specific cells either proliferate or undergo apoptosis, the process by which cells self-destruct. Understanding exactly how Scythe balances apoptosis with cell proliferation could provide significant insights into how organs develop in the growing embryo, researchers said.


The St. Jude team showed in laboratory models that in the absence of Scythe the lungs, kidneys and brains develop abnormally and the embryos cannot survive. These defects were caused by the loss of control over both the multiplication of some cells and the process of apoptosis, in which cells self-destruct.

Normally, there is a balance between life and death in the embryo as the various parts of specific organs get "sculpted" out of the growing mass of cells and some cells are eliminated, according to Peter McKinnon, Ph.D., an associate member of the St. Jude Department of Genetics and Tumor Cell Biology. But cells in certain organs of models lacking both copies of the Scythe gene (Scythe-/-) either failed to receive or failed to respond to signals triggering proliferation or apoptosis. The resulting organs were malformed and unable to function properly, he said. McKinnon is the senior author of a report on this work that appears in the December issue of Molecular and Cellular Biology.

"Scythe is critical to the embyro’s ability to survive and develop normally," McKinnon said. "The protein appears to regulate both apoptosis and the multiplication of cells in a way that we don’t yet understand."

Previous work by other researchers suggests that the Scythe protein might work by regulating the folding and activity of the molecules that make up the signaling pathway that controls apoptosis. Scythe was also known to interact with another protein called Reaper to control development of the fruit fly. Therefore, the St. Jude team developed laboratory models lacking both copies of Scythe to study what happens in the gene’s absence. The scientists discovered that major defects in lung development appeared late in the process of embryo development.

Specifically, the lungs were very small and their branching airways were underdeveloped. In addition, there were almost no alveoli--the small air sacs at the end of the smallest airways. Moreover, the kidneys failed to form properly or did not form at all. This showed that Scythe is required for development of both the lung and kidney. The Scythe-/- model also often failed to develop a normal brain. In the absence of Scythe some parts of the brain grew abnormally large and contained excessive amounts of water.

Finally, the St. Jude team showed that cells from the Scythe-/- model responded to ionizing radiation and hydrogen peroxide by undergoing apoptosis like normal cells. However, these cells were more resistant to menadiaone and thapsigarin--two chemicals known to trigger apoptosis. But when the investigators put Scythe genes back into the cells, they became sensitive to these treatments and underwent apoptosis.

"These chemicals affect the movement of calcium inside a special structure where proteins are made," McKinnon said. "This showed that Scythe helps trigger apoptosis in specific circumstances. Further studies are currently underway to elucidate this process."

Part of the Scythe molecule resembles that of molecules known to be involved with protein destruction, according to Fabienne Desmots, the postdoctoral researcher in the Department of Genetics and Tumor Cell Biology who did much of the work on this project. This finding suggests that Scythe might help to regulate the signaling molecules that are involved in either apoptosis or cell proliferation.

"By having a hand in controlling the levels of key proteins involved in these processes, Scythe appears to indirectly balance life and death decisions in the growing embryo," said Desmots, who is the first author of the paper. Desmots is now at the University of Rennes in France.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>