Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blazing a new path for Emery-Dreifuss Muscular Dystrophy

13.12.2005


News from the Cell Biology Meeting in San Francisco



Bushwhacking through the cellular jungle, researchers are always relieved to stumble across a known molecular pathway. Imagine their excitement at finding a major intersection in unmapped territory. Antoine Muchir and Howard Worman at the Columbia University College of Physicians & Surgeons in New York and their colleagues in France, have discovered a cellular "crossroads" that links the function of the MAP kinase pathway, long implicated in heart failure, to A-type nuclear lamins. Mutations in LMNA, the gene encoding all A-type lamins, cause at least two heritable diseases that affect the heart: Dilated Cardiomyopathy with conduction system defects (DC) and Emery-Dreifuss Muscular Dystrophy (EDMD), which affects muscles and tendons in addition to causing life-threatening cardiomyopathy and cardiac conduction system defects. Muchir presented the findings Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

Instead of using a machete, these cellular trailblazers followed a mouse. The researchers created a "knock-in" model mouse by replacing the normal mouse LMNA gene with a mutated human gene that causes EDMD. Lamin proteins form a network of filaments inside the nucleus, conferring shape and mechanical stability, but they are also "used" by many other proteins and pathways in the nucleus, for a variety of purposes. Mutations in LMNA cause a wide range of human diseases--besides DC and EDMD, these "laminopathies" include other heritable forms of muscular dystrophy, lipodystrophy, neuropathy, bone disorders and accelerated aging (progeria) syndromes.


But no one knew why defective A-type lamins, which are expressed in almost all differentiated cells in the body, specifically affected the heart. Muchir and collaborators used their ’knock-in’ EDMD model mouse to test the immediate effects of this lamin mutation on gene expression. Taking cardiac muscle from the genetically altered mice, the researchers used "gene chip" DNA microarrays to rapidly screen for changes in expression levels. Unlike normal mouse hearts, the mutant hearts showed increased expression of genes encoding MAP kinases, which were previously implicated in heart hypertrophy and failure. These same experiments also revealed changes in the expression of genes encoding other components of the muscle contraction apparatus, an angiogenesis factor and a heart hormone. All three play roles in other forms of cardiomyopathy.

As for MAP kinases, the laminopathy connection couldn’t have turned up a more promising pathway. Short for "mitogen-activated pathway," the MAP kinase family influences many aspects of cell life including gene expression, mitosis, differentiation and apoptosis (programmed cell death). MAP kinases have attracted basic researchers for decades, and pharmaceutical companies have begun developing MAP kinase inhibitors as potential therapeutic agents. The trail blazed here by Muchir and colleagues opens the possibility that MAP kinase inhibitors could be used to treat lamin-related cardiomyopathies.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>