Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blazing a new path for Emery-Dreifuss Muscular Dystrophy


News from the Cell Biology Meeting in San Francisco

Bushwhacking through the cellular jungle, researchers are always relieved to stumble across a known molecular pathway. Imagine their excitement at finding a major intersection in unmapped territory. Antoine Muchir and Howard Worman at the Columbia University College of Physicians & Surgeons in New York and their colleagues in France, have discovered a cellular "crossroads" that links the function of the MAP kinase pathway, long implicated in heart failure, to A-type nuclear lamins. Mutations in LMNA, the gene encoding all A-type lamins, cause at least two heritable diseases that affect the heart: Dilated Cardiomyopathy with conduction system defects (DC) and Emery-Dreifuss Muscular Dystrophy (EDMD), which affects muscles and tendons in addition to causing life-threatening cardiomyopathy and cardiac conduction system defects. Muchir presented the findings Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

Instead of using a machete, these cellular trailblazers followed a mouse. The researchers created a "knock-in" model mouse by replacing the normal mouse LMNA gene with a mutated human gene that causes EDMD. Lamin proteins form a network of filaments inside the nucleus, conferring shape and mechanical stability, but they are also "used" by many other proteins and pathways in the nucleus, for a variety of purposes. Mutations in LMNA cause a wide range of human diseases--besides DC and EDMD, these "laminopathies" include other heritable forms of muscular dystrophy, lipodystrophy, neuropathy, bone disorders and accelerated aging (progeria) syndromes.

But no one knew why defective A-type lamins, which are expressed in almost all differentiated cells in the body, specifically affected the heart. Muchir and collaborators used their ’knock-in’ EDMD model mouse to test the immediate effects of this lamin mutation on gene expression. Taking cardiac muscle from the genetically altered mice, the researchers used "gene chip" DNA microarrays to rapidly screen for changes in expression levels. Unlike normal mouse hearts, the mutant hearts showed increased expression of genes encoding MAP kinases, which were previously implicated in heart hypertrophy and failure. These same experiments also revealed changes in the expression of genes encoding other components of the muscle contraction apparatus, an angiogenesis factor and a heart hormone. All three play roles in other forms of cardiomyopathy.

As for MAP kinases, the laminopathy connection couldn’t have turned up a more promising pathway. Short for "mitogen-activated pathway," the MAP kinase family influences many aspects of cell life including gene expression, mitosis, differentiation and apoptosis (programmed cell death). MAP kinases have attracted basic researchers for decades, and pharmaceutical companies have begun developing MAP kinase inhibitors as potential therapeutic agents. The trail blazed here by Muchir and colleagues opens the possibility that MAP kinase inhibitors could be used to treat lamin-related cardiomyopathies.

John Fleischman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>