Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blazing a new path for Emery-Dreifuss Muscular Dystrophy

13.12.2005


News from the Cell Biology Meeting in San Francisco



Bushwhacking through the cellular jungle, researchers are always relieved to stumble across a known molecular pathway. Imagine their excitement at finding a major intersection in unmapped territory. Antoine Muchir and Howard Worman at the Columbia University College of Physicians & Surgeons in New York and their colleagues in France, have discovered a cellular "crossroads" that links the function of the MAP kinase pathway, long implicated in heart failure, to A-type nuclear lamins. Mutations in LMNA, the gene encoding all A-type lamins, cause at least two heritable diseases that affect the heart: Dilated Cardiomyopathy with conduction system defects (DC) and Emery-Dreifuss Muscular Dystrophy (EDMD), which affects muscles and tendons in addition to causing life-threatening cardiomyopathy and cardiac conduction system defects. Muchir presented the findings Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

Instead of using a machete, these cellular trailblazers followed a mouse. The researchers created a "knock-in" model mouse by replacing the normal mouse LMNA gene with a mutated human gene that causes EDMD. Lamin proteins form a network of filaments inside the nucleus, conferring shape and mechanical stability, but they are also "used" by many other proteins and pathways in the nucleus, for a variety of purposes. Mutations in LMNA cause a wide range of human diseases--besides DC and EDMD, these "laminopathies" include other heritable forms of muscular dystrophy, lipodystrophy, neuropathy, bone disorders and accelerated aging (progeria) syndromes.


But no one knew why defective A-type lamins, which are expressed in almost all differentiated cells in the body, specifically affected the heart. Muchir and collaborators used their ’knock-in’ EDMD model mouse to test the immediate effects of this lamin mutation on gene expression. Taking cardiac muscle from the genetically altered mice, the researchers used "gene chip" DNA microarrays to rapidly screen for changes in expression levels. Unlike normal mouse hearts, the mutant hearts showed increased expression of genes encoding MAP kinases, which were previously implicated in heart hypertrophy and failure. These same experiments also revealed changes in the expression of genes encoding other components of the muscle contraction apparatus, an angiogenesis factor and a heart hormone. All three play roles in other forms of cardiomyopathy.

As for MAP kinases, the laminopathy connection couldn’t have turned up a more promising pathway. Short for "mitogen-activated pathway," the MAP kinase family influences many aspects of cell life including gene expression, mitosis, differentiation and apoptosis (programmed cell death). MAP kinases have attracted basic researchers for decades, and pharmaceutical companies have begun developing MAP kinase inhibitors as potential therapeutic agents. The trail blazed here by Muchir and colleagues opens the possibility that MAP kinase inhibitors could be used to treat lamin-related cardiomyopathies.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>