Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chlamydia parasite lives off our fat


News from the Cell Biology Meeting in San Francisco

Invasive bacterial pathogens, the Chlamydiae know us very, very well. The Chlamydiae learned to parasitize eukaryotic cells half a billion years ago by reprogramming cellular functions from within. In humans today, chlamydial infections are responsible for a range of ailments from sexually transmitted infections to atypical pneumonias to chronic severe disorders such as pelvic inflammatory disease and atherosclerosis. The Centers for Disease Control says that Chlamydia trachomatis is the most common sexually-transmitted infection in the US, with three million new cases a year.

Chlamydia gets around because it knows its hosts so well. It’s an "obligate intracellular parasite" which means that it relies on its eukaryotic host for everything from reproduction to synthesizing ATP, all while living inside a membrane-bounded vacuole that provides a protected, fertile environment for the bacteria to grow and multiply. Because lipid acquisition from the host is necessary for chlamydial replication, these pathogens are essentially lipid parasites. So, to add insult to injury, Chlamydia apparently lives on our fat.

Lipid droplets are fat-rich structures found in all eukaryotic cells. In humans, lipid droplets are abundant in adipocytes, our professional fat storage cells, where they have traditionally been regarded as passive storage depots of excess fat. However, recent studies have reassessed their role. Lipid droplets are now known to be motile, dynamic and enriched for proteins known to regulate lipid synthesis, membrane traffic and cell signaling. Now in new research presented Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco, Yadunanda Kumar and Raphael Valdivia of Duke University Medical Center report that Chlamydia loves our lipid droplets.

The discovery of an interaction between lipid droplets and Chlamydia was made as Kumar and Valdivia performed the genetic equivalent of an end-run. Chlamydia is not amenable to direct genetic manipulation so the researchers moved the pathogen’s genes elsewhere, inserting them into the eukaryotic cells of baker’s yeast. The resulting chlamydial proteins were screened for those that targeted to yeast intracellular organelles. They identified four proteins that were specifically recruited to lipid droplets.

The researchers found that Chlamydia not only directs lipid droplets to its protective vacuole but also causes the proliferation of new lipid droplets on the host. The co-option of lipid droplets appears to be essential for Chlamydia pathogenesis. When the researchers used drugs to inhibit lipid droplet formation in the host, they sharply impaired bacterial growth.

That finding immediately presents a new target for anti-Chlamydia drugs but it also suggests an entirely novel pathogenic mechanism. "We propose that Chlamydia use lipid droplets in a previously unknown pathway for lipid acquisition," says Kumar. "Alternatively, it is possible that the recruitment of lipid droplets constitutes an example of ’organelle mimicry’ where Chlamydia escapes recognition by the host by cloaking itself in these fat-rich structures."

Understanding host lipid transport by Chlamydiae may have further implication for chronic infections, the researchers say. For example, lipid-rich macrophages ("foam cells") are a symptom in chlamydial pneumonia. Because foam cells are a key element in development of atherosclerosis, lipid droplet co-option also suggests a possible explanation for the association between chlamydial infections and heart disease.

John Fleischman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>