Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chlamydia parasite lives off our fat


News from the Cell Biology Meeting in San Francisco

Invasive bacterial pathogens, the Chlamydiae know us very, very well. The Chlamydiae learned to parasitize eukaryotic cells half a billion years ago by reprogramming cellular functions from within. In humans today, chlamydial infections are responsible for a range of ailments from sexually transmitted infections to atypical pneumonias to chronic severe disorders such as pelvic inflammatory disease and atherosclerosis. The Centers for Disease Control says that Chlamydia trachomatis is the most common sexually-transmitted infection in the US, with three million new cases a year.

Chlamydia gets around because it knows its hosts so well. It’s an "obligate intracellular parasite" which means that it relies on its eukaryotic host for everything from reproduction to synthesizing ATP, all while living inside a membrane-bounded vacuole that provides a protected, fertile environment for the bacteria to grow and multiply. Because lipid acquisition from the host is necessary for chlamydial replication, these pathogens are essentially lipid parasites. So, to add insult to injury, Chlamydia apparently lives on our fat.

Lipid droplets are fat-rich structures found in all eukaryotic cells. In humans, lipid droplets are abundant in adipocytes, our professional fat storage cells, where they have traditionally been regarded as passive storage depots of excess fat. However, recent studies have reassessed their role. Lipid droplets are now known to be motile, dynamic and enriched for proteins known to regulate lipid synthesis, membrane traffic and cell signaling. Now in new research presented Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco, Yadunanda Kumar and Raphael Valdivia of Duke University Medical Center report that Chlamydia loves our lipid droplets.

The discovery of an interaction between lipid droplets and Chlamydia was made as Kumar and Valdivia performed the genetic equivalent of an end-run. Chlamydia is not amenable to direct genetic manipulation so the researchers moved the pathogen’s genes elsewhere, inserting them into the eukaryotic cells of baker’s yeast. The resulting chlamydial proteins were screened for those that targeted to yeast intracellular organelles. They identified four proteins that were specifically recruited to lipid droplets.

The researchers found that Chlamydia not only directs lipid droplets to its protective vacuole but also causes the proliferation of new lipid droplets on the host. The co-option of lipid droplets appears to be essential for Chlamydia pathogenesis. When the researchers used drugs to inhibit lipid droplet formation in the host, they sharply impaired bacterial growth.

That finding immediately presents a new target for anti-Chlamydia drugs but it also suggests an entirely novel pathogenic mechanism. "We propose that Chlamydia use lipid droplets in a previously unknown pathway for lipid acquisition," says Kumar. "Alternatively, it is possible that the recruitment of lipid droplets constitutes an example of ’organelle mimicry’ where Chlamydia escapes recognition by the host by cloaking itself in these fat-rich structures."

Understanding host lipid transport by Chlamydiae may have further implication for chronic infections, the researchers say. For example, lipid-rich macrophages ("foam cells") are a symptom in chlamydial pneumonia. Because foam cells are a key element in development of atherosclerosis, lipid droplet co-option also suggests a possible explanation for the association between chlamydial infections and heart disease.

John Fleischman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>