Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chlamydia parasite lives off our fat

13.12.2005


News from the Cell Biology Meeting in San Francisco



Invasive bacterial pathogens, the Chlamydiae know us very, very well. The Chlamydiae learned to parasitize eukaryotic cells half a billion years ago by reprogramming cellular functions from within. In humans today, chlamydial infections are responsible for a range of ailments from sexually transmitted infections to atypical pneumonias to chronic severe disorders such as pelvic inflammatory disease and atherosclerosis. The Centers for Disease Control says that Chlamydia trachomatis is the most common sexually-transmitted infection in the US, with three million new cases a year.

Chlamydia gets around because it knows its hosts so well. It’s an "obligate intracellular parasite" which means that it relies on its eukaryotic host for everything from reproduction to synthesizing ATP, all while living inside a membrane-bounded vacuole that provides a protected, fertile environment for the bacteria to grow and multiply. Because lipid acquisition from the host is necessary for chlamydial replication, these pathogens are essentially lipid parasites. So, to add insult to injury, Chlamydia apparently lives on our fat.


Lipid droplets are fat-rich structures found in all eukaryotic cells. In humans, lipid droplets are abundant in adipocytes, our professional fat storage cells, where they have traditionally been regarded as passive storage depots of excess fat. However, recent studies have reassessed their role. Lipid droplets are now known to be motile, dynamic and enriched for proteins known to regulate lipid synthesis, membrane traffic and cell signaling. Now in new research presented Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco, Yadunanda Kumar and Raphael Valdivia of Duke University Medical Center report that Chlamydia loves our lipid droplets.

The discovery of an interaction between lipid droplets and Chlamydia was made as Kumar and Valdivia performed the genetic equivalent of an end-run. Chlamydia is not amenable to direct genetic manipulation so the researchers moved the pathogen’s genes elsewhere, inserting them into the eukaryotic cells of baker’s yeast. The resulting chlamydial proteins were screened for those that targeted to yeast intracellular organelles. They identified four proteins that were specifically recruited to lipid droplets.

The researchers found that Chlamydia not only directs lipid droplets to its protective vacuole but also causes the proliferation of new lipid droplets on the host. The co-option of lipid droplets appears to be essential for Chlamydia pathogenesis. When the researchers used drugs to inhibit lipid droplet formation in the host, they sharply impaired bacterial growth.

That finding immediately presents a new target for anti-Chlamydia drugs but it also suggests an entirely novel pathogenic mechanism. "We propose that Chlamydia use lipid droplets in a previously unknown pathway for lipid acquisition," says Kumar. "Alternatively, it is possible that the recruitment of lipid droplets constitutes an example of ’organelle mimicry’ where Chlamydia escapes recognition by the host by cloaking itself in these fat-rich structures."

Understanding host lipid transport by Chlamydiae may have further implication for chronic infections, the researchers say. For example, lipid-rich macrophages ("foam cells") are a symptom in chlamydial pneumonia. Because foam cells are a key element in development of atherosclerosis, lipid droplet co-option also suggests a possible explanation for the association between chlamydial infections and heart disease.

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>