Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano springs eternal; Protozoan ’engine’ posts nano records

13.12.2005


Bioscience news from the cell biology meeting in San Francisco



Looking through his handmade microscope in 1702, it was Anton van Leeuwenhoek who first described the workings of a nano machine. He observed the rapid contraction of a stalk tethering the cell body of a tiny protozoan, Vorticella convallaria, to the surface of a leaf. Little did van Leeuwenhoek imagine that more than 300 years later, the biological spring that drives Vorticella would set records for speed and power in the nano world of cellular engines. It might also power future generations of nano devices and materials, according to biological engineer Danielle Cook France and colleagues at MIT, the Whitehead Institute, the Marine Biological Laboratory, and the University of Illinois, Chicago. France presented her findings Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

The spring in the unicellular Vorticella is a contractile fiber bundle, called the spasmoneme, which runs the length of the stalk. At rest, the stalk is elongated like a stretched telephone cord. When it contracts, the spasmoneme winds back in a flash, forming a tight coil. To find out how fast and how hard Vorticella recoils, France and colleagues used modern microscopes and tools to measure the force and speed of the spring. This is one powerful engine, France reports. The spasmoneme’s contraction is measured in nano-newtons of force and centimeters/second of speed in a biological world where the ruler markings are usually in tiny pico-newtons and micrometers/second. Gram for gram, the power of the spasmoneme engine outperforms human muscles and car engines.


It also runs on a different fuel. Molecular motors that power muscle contraction, for example, use ATP molecules for energy. The spasmoneme runs on calcium, but its drive mechanism was poorly understood until France and colleagues got under the nano hood. Like van Leeuwenhoek, the researchers studied Vorticella under the microscope but they also had specialized biochemical methods to slow and inhibit the contraction, to freeze-frame it, and to discern details of the calcium fuel system.

Earlier research had identified a cellular protein, spasmin, as the possible calcium-responsive component of the stalk. "The Vorticella spasmins are now known to belong to the centrin family of calcium-binding proteins," says France. "Centrins are ubiquitous to eukaryotic cells and some family members are found in filamentous structures in organisms other than Vorticella, ranging from green algae to humans."

In sorting out centrin’s role in the Vorticella spring, France and colleagues found that an antibody to Vorticella centrin abolished contractility. Along with other evidence, this interference suggests that the spasmoneme uses a powerful centrin-based mechanism that is unlike any complex actin or microtubule-based cellular engine, says France. "This leads us closer to understanding two things: how cells use centrin-based engines to generate enormous forces and how we can possibly reconstruct centrin-based materials and devices for our own use at the micrometer and nanometer scales."

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>