Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano springs eternal; Protozoan ’engine’ posts nano records

13.12.2005


Bioscience news from the cell biology meeting in San Francisco



Looking through his handmade microscope in 1702, it was Anton van Leeuwenhoek who first described the workings of a nano machine. He observed the rapid contraction of a stalk tethering the cell body of a tiny protozoan, Vorticella convallaria, to the surface of a leaf. Little did van Leeuwenhoek imagine that more than 300 years later, the biological spring that drives Vorticella would set records for speed and power in the nano world of cellular engines. It might also power future generations of nano devices and materials, according to biological engineer Danielle Cook France and colleagues at MIT, the Whitehead Institute, the Marine Biological Laboratory, and the University of Illinois, Chicago. France presented her findings Sunday at the 45th Annual Meeting of the American Society for Cell Biology in San Francisco.

The spring in the unicellular Vorticella is a contractile fiber bundle, called the spasmoneme, which runs the length of the stalk. At rest, the stalk is elongated like a stretched telephone cord. When it contracts, the spasmoneme winds back in a flash, forming a tight coil. To find out how fast and how hard Vorticella recoils, France and colleagues used modern microscopes and tools to measure the force and speed of the spring. This is one powerful engine, France reports. The spasmoneme’s contraction is measured in nano-newtons of force and centimeters/second of speed in a biological world where the ruler markings are usually in tiny pico-newtons and micrometers/second. Gram for gram, the power of the spasmoneme engine outperforms human muscles and car engines.


It also runs on a different fuel. Molecular motors that power muscle contraction, for example, use ATP molecules for energy. The spasmoneme runs on calcium, but its drive mechanism was poorly understood until France and colleagues got under the nano hood. Like van Leeuwenhoek, the researchers studied Vorticella under the microscope but they also had specialized biochemical methods to slow and inhibit the contraction, to freeze-frame it, and to discern details of the calcium fuel system.

Earlier research had identified a cellular protein, spasmin, as the possible calcium-responsive component of the stalk. "The Vorticella spasmins are now known to belong to the centrin family of calcium-binding proteins," says France. "Centrins are ubiquitous to eukaryotic cells and some family members are found in filamentous structures in organisms other than Vorticella, ranging from green algae to humans."

In sorting out centrin’s role in the Vorticella spring, France and colleagues found that an antibody to Vorticella centrin abolished contractility. Along with other evidence, this interference suggests that the spasmoneme uses a powerful centrin-based mechanism that is unlike any complex actin or microtubule-based cellular engine, says France. "This leads us closer to understanding two things: how cells use centrin-based engines to generate enormous forces and how we can possibly reconstruct centrin-based materials and devices for our own use at the micrometer and nanometer scales."

John Fleischman | EurekAlert!
Further information:
http://www.ascb.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>