Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the Neuron Sprouts Its Branches

12.12.2005


Neurobiologists have gained new insights into how neurons control growth of the intricate tracery of branches called dendrites that enable them to connect with their neighbors. Dendritic connections are the basic receiving stations by which neurons form the signaling networks that constitute the brain’s circuitry.



Such basic insights into neuronal growth will help researchers better understand brain development in children, as well as aid efforts to restore neuronal connections lost to injury, stroke or neurodegenerative disease, said the researchers.

In a paper published in the Dec. 8, 2005, issue of Neuron, Howard Hughes Medical Institute investigator Michael Ehlers and his colleagues reported that structures called "Golgi outposts" play a central role as distribution points for proteins that form the building blocks of the growing dendrites.


Besides Ehlers, who is at Duke University Medical Center, other co-authors were April Horton in Ehlers’ laboratory; Richard Weinberg of the University of North Carolina at Chapel Hill.; Bence Rácz in Weinberg’s laboratory; and Eric Monson and Anna Lin of Duke’s Department of Physics. The research was sponsored by The National Institutes of Health.

The Golgi apparatus is a cellular warehouse responsible for receiving, sorting and shipping cargoes of newly synthesized molecules needed for cell growth and function. Until the new findings, researchers believed that only a central Golgi apparatus played a role in such distribution, said Ehlers.

"In most mammalian cells, the Golgi has a very stereotyped structure, a stacked system that resides near the cell nucleus in the middle of the cell," he said. "But mammalian neurons in the brain are huge, with a surface area about ten thousand times that of the average cell. So, it was an entirely open question where all the membrane components came from to generate the complex surface of growing dendrites. And we thought these remote structures we had discovered in dendrites called Golgi outposts might play a role."

The researchers studied the dendritic growth process in pyramidal neurons, which grow a single long "apical" dendrite and many shorter ones. To explore the role of Golgi outposts, they used imaging of living rat brain cells grown in culture, as well as electron microscopy of rat brain tissue.

These studies revealed that the Golgi outposts tended to appear in longer dendrites and also that those Golgi in the main cell body tended to orient toward longer dendrites. And importantly, said Ehlers, the studies in cell culture revealed that the Golgi orientation preceded the preferential growth of long dendrites.

"This finding showed us that we weren’t just seeing a correlation between Golgi and longer dendrites," said Ehlers. "Initially, when these growing dendrites are all essentially uniform in length, they grow at about the same rate. But later, after the Golgi orient toward one dendrite, it takes off and grows dynamically to become the longest dendrite." The researchers also used tracer molecules to track the molecular cargo secreted by the Golgi, said Ehlers.

"We saw very clearly that this cargo that originates in the Golgi gets directed towards the one longest dendrite in a highly preferential way," he said. "As cargo comes out of the Golgi, it does not go randomly to the cell surface." Ehlers and his colleagues also found that the Golgi outposts appeared to locate themselves at dendritic branch points.

"This finding is important because a fundamental problem that neurons must solve is how to sort appropriate cargo molecules in the right amounts down different dendritic branches," said Ehlers. "After all, different dendritic branches can have different functional properties, molecular composition and electrical properties. So, when a cargo reaches a branch point, it’s like a highway intersection, and the cargo needs to be directed. We’ve found that these dendritic Golgi outposts are located at the strategic points to do just that. And I believe this is the first such specific organelle identified at a dendritic branch point positioned to perform this fundamental neuronal function."

Finally, the researchers disrupted the orientation, or "polarity," of the Golgi -- thus causing them to move into all the dendrites -- without disrupting their function. They found that disrupting the polarity caused all the dendrites to grow at the same rate.

Further studies, said Ehlers, will explore how Golgi outposts arise, how they arrive at dendritic branch points and what cargo they distribute. The researchers also will seek to understand how molecules are selected for import to the distant reaches of the dendrites and which will be locally synthesized in the dendrites. Such studies could give important insights into the machinery of neuronal growth and how it is controlled, he said.

"Understanding this machinery has clinical relevance because many disorders of brain development in children manifest abnormal dendritic structures," said Ehlers. "Also, it turns out that most neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, are disorders of protein processing. But we know very little about how and where integral membrane proteins are synthesized and processed by neurons."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>