Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cancerous Cells Should Be Urged To Suicide

12.12.2005


When fighting cancerous growths, it is very important to use internal cellular mechanisms on top of various external impacts on the tumor. Among internal mechanisms is cells’ ability for “suicide” - programmed cell death, which is called apoptosis. The cells resort to apoptosis when something is irreparably broken in them and the cells need to perform self-destruction to avoid causing damage to the entire organism. Apoptosis is executed by intracellular protease enzymes (they are called caspases). Caspases destroy target proteins located in the cytoplasm and the cell’s nucleus. Cellular genome is also the target of caspases’ action. Caspases’ activation occurs as a result of a complicated chain of biochemical reactions which are launched specifically by special receptors on the cellular membrane. Specialists call them dreadly – “receptors of death”.



Unfortunately, cancerous cells, on top of their ability for uncontrolled reproduction, also possess a striking capability for survival. As the contents of caspases’ predecessors – procaspases – and accordingly that of caspases may be reduced in the cancerous cells, induction of apoptosis in these cells is difficult. If the content could be increased, physicians would get an efficient instrument to fight this fatal disease. Solution of this problem is addressed by the joint project of Russian and American researchers from the Center for Theoretical Problems of Physicochemical Pharmacology (project manager - Mikhail Khanin, Doctor of Science (Engineering), Professor, the Lenin prize laureate) and Mayo Clinic, Rochester, Minnesota, USA (project manager – Scott Harold Kaufmann, prominent researcher of apoptosis, Professor, Doctor of Philosophy and Medicine).

The project has been sponsored by the international foundation CRDF and the Federal Agency for Science and Innovations (Rosnauka). The researchers are planning to solve the task by a combination of mathematical modelling and biochemical methods. “Mathematical models are increasingly recognized in recent years as an efficient method for investigation of execution behaviour of complicated biochemical systems, points out Mikhail Khanin. These systems are nonlinear, and their behavior has typical properties; for example, threshold effects. All these dynamic properties can be predicted and described with the help of mathematical modelling and subsequent computer simulation.”


Apoptosis – is a cellular suicide, but the decision about it is made not only by the cell itself but also the immune system, which “gives an order” having discovered fatal injuries in a certain cell. And the cell is at constant alert to fulfill the order. This can be compared to a person who, leaving home, takes a rope and a bar of soap just in case. Thus, any cell carries the mechanism of death inside. The “receptors of death” on the cellular membrane stick out by one end, a molecule released by the immune system cells comes up to this end and forms a complex with the receptor. After that, the receptor transmits a signal inside the cell to activate caspases. This is how apoptosis is launched.

To build the mathematical model for caspases’ activation, researchers should know numerical values of all kinetic constants of apoptosis biochenical reactions. Kinetic constants determine the enzymatic reactions’ rate. The point is that only a small part of necessary kinetic constants is determined by biochemical methods. The rest can be calculated with the help of optimization mathematical models. In this case, the basic principle of physiological (and biochemical) systems’ organization – principle of optimality – helps the researchers. This means, for example, that the system spends minimal energy to perform its functions in the organism. The same is applicable to apoptosis – it is necessary to destroy proteins and the genome quickly enough and at minimal expense.

So, at first phase, the researchers need to calculate kinetic constants of reactions and then to build mathematical model of caspases’ activation dynamics, i.e., in fact, the apoptosis induction model. The model’s accuracy will be appreciated by coincidence of modelling and biochemical research results.

Having the mathematical model of apoptosis dynamics available, the researchers will be able to apply it to find the ways of apoptosis induction reinforcement in various types of malignant cells.

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>