Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants, too, have ways to manage freeloaders

09.12.2005


The pretty yellow bush lupine is no pushover for freeloading bacteria



Many, if not all, plants maintain relationships with bacteria, and like any hardworking homeowner, they have developed ways to get rid of freeloaders, University of California, Berkeley, biologists have found.

In a study of a coastal California lupine that harbors nitrogen-fixing bacteria in its roots, UC Berkeley researchers have shown that the roots respond differently to bacteria that efficiently produce nitrogen than they do to the slackers. Root nodules - in which bacteria share nitrogen with the plant in return for energy - grow bigger when infected with bacteria that are good at sharing nitrogen, but remain small when they house bacteria that are not.


The finding illustrates the complex symbiotic relationships that have evolved between organisms, ranging from one-sided parasitism to mutualism, a situation in which both parties benefit.

It also suggests that agricultural practices, including heavy use of nitrogen fertilizer, could disrupt these relationships and create plants with a reduced ability to choose among root bacteria.

"It’s important to look at this from an evolutionary perspective and to think about plants making choices both before and after infection," said Ellen Simms, UC Berkeley professor of integrative biology and leader of the study. "We may have bred this ability out of our crops."

Simms and her colleagues, including D. Lee Taylor, a former UC Berkeley post-doctoral fellow now at the Institute of Arctic Biology in Fairbanks, Ala., current UC Berkeley graduate student Joshua Povich, and Richard P. Shefferson, now of the Forestry and Forest Products Research Institute in Tsukuba, Japan, reported their findings in October in an online publication of the Proceedings of the Royal Society B.

Simms studies mutualism between plants and bacteria, such as the classic relationship between legumes and nitrogen-fixing bacteria. As legumes such as the lupine sprout, they send out roots that encounter nitrogen-fixing bacteria in the soil. The bacteria infect the roots and stimulate them to form nodules. Nodule cells then engulf the bacteria and provide oxygen and energy from photosynthesis in return for nitrogen needed to make proteins.

Such mutualism is puzzling, however, Simms said.

"Mutualism is a paradox because natural selection acts on individuals, so why would an individual do something costly that benefits another individual?" she said. "Such a system is also vulnerable to exploitation - one species taking advantage of another. What mechanisms could prevent this?"

She and colleagues proposed several years ago that in cooperative relationships, one member must have the upper hand in enforcing good behavior. This could involve shutting down resources to nodules inhabited by poorly performing bacteria, or preventing the aging of nodules more effective at fixing nitrogen.

In studies at the University of California’s Bodega Marine Reserve, a 362-acre preserve located about 60 miles north of the UC Berkeley campus, Simms and her colleagues set out to test some of these hypotheses about mutualism. She chose as her subject the lupine, one of the plants she has researched during the nearly 15 years she has studied the ecology of nitrogen fixation in legumes.

Lupines are widespread and beautiful wildflowers, but they also have been used for human and animal food for more than 2,000 years in parts of Europe and South America. Before new "sweet" breeds were developed 80 years ago, the often toxic alkaloids found in wild lupines had to be leached out. In addition, native Californians used strong thin lupine roots to make snares and fishing nets.

In a preliminary study, she, Taylor and Povich used molecular markers to identify the different strains of the bacteria Bradyrhizobia that interact with roots of the six species of lupine found on the reserve site.

They then tested 10 of these strains to see which were preferred by two of the six lupine species. Working in a greenhouse at UC Berkeley, Povich planted lupine seeds collected from two lupine species at the site. As the seeds sprouted, he inoculated each plant with one of 10 different strains of bacteria, then harvested the plants after six months to determine their growth. Plants inoculated with some strains grew larger, while other strains produced smaller plants.

For the main experiment, Simms concentrated on the yellow bush lupine (Lupinus arboreus), and chose to inoculate each plant with two of three rhizobial strains selected from the 10 strains that Povich tested. The three were chosen to include a poor nitrogen sharer, a mediocre sharer and good sharer, so as to give each plant a choice between two distinctly different strains.

Povich, with assistance from UC Berkeley undergraduates Yla Tausczik and Mona Urbina, then planted lupine seeds collected from six different stands of yellow lupine on the reserve site. As the seeds sprouted, they inoculated the potting soil with various pairs of the three strains.

Using a technique called the polymerase chain reaction to identify the bacteria in individual nodules, the researchers found that many plants nodulated both strains that were offered. On average, however, within individual plants, the poorly performing bacteria inhabited small nodules, while the more effective inhabited larger nodules.

"There’s not a big difference between strains," Simms said, "yet the plant can distinguish them."

In a subsequent experiment, they confirmed that the larger the root nodule, the more nitrogen-fixing bacteria it contained. Only rarely did they find more than one strain of microbe in a nodule, though a single plant might nodulate more than one strain in separate nodules.

"These results support the hypothesis that legumes can favor more cooperative rhizobia by manipulating bacterial fitness in the nodule," the authors wrote.

"We think that when roots explore the soil and encounter bacteria, they will nodulate them, but then the plant will evaluate how much nitrogen it’s getting from the bacteria and the efficiency with which it’s getting the nitrogen," Simms explained. "If the bacteria are doing a good job, the plant will start supporting it and the nodule will grow. But if the bacteria are not as beneficial, the plant will not support it, and the nodule doesn’t grow."

Some researchers have suggested that one way plants like soybeans can keep nodules small is by limiting oxygen, but this hypothesis needs further testing, she said.

Simms noted that crop plants such as soybeans have been shown to produce smaller nodules when their bacteria were deprived of atmospheric nitrogen, which prevented them from sharing nitrogen with the plant. However, no one had asked whether plants could detect natural differences in nitrogen fixation among the microbes they encounter in the soil.

Interestingly, not all plants seem to nodulate the best bacterial species, which could mean that strains also differ in how easily they can enter the plant roots to initiate nodulation. This could explain why soybean and other legume crops in fields inoculated with the supposedly most efficient strain of nitrogen-fixing bacteria do not always take up that strain - an expensive problem for farmers.

"The most effective strain is not always best at competing for nodules," Simms said. "Is it the plant or the microbe that determines this? Have we bred out of crop plants the ability to choose their root bacteria?"

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht New procedure enables cultivation of human brain sections in the petri dish
19.10.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht The “everywhere” protein: honour for the unravellor of its biology
19.10.2017 | Boehringer Ingelheim Stiftung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>