Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study: New muscle-building agent beats all previous ones

09.12.2005


The Johns Hopkins scientists who first created "mighty mice" have developed, with pharmaceutical company Wyeth and the biotechnology firm MetaMorphix, an agent that’s more effective at increasing muscle mass in mice than a related potential treatment for muscular dystrophy now in clinical trials.



The new agent is a version of a cellular docking point for the muscle-limiting protein myostatin. In mice, just two weekly injections of the new agent triggered a 60 percent increase in muscle size, the researchers report in the Proceedings of the National Academy of Sciences, published online Dec. 5 and available publicly through the journal’s website.

The researchers’ original mighty mice, created by knocking out the gene that codes for myostatin, grew muscles twice as big as normal mice. An antibody against myostatin now in clinical trials caused mice to develop muscles 25 percent larger than those of untreated mice after five weeks or more of treatment.


The researchers’ expectation is that blocking myostatin might help maintain critical muscle strength in people whose muscles are wasting due to diseases like muscular dystrophy or side effects from cancer treatment or AIDS.

"This new inhibitor of myostatin, known as ACVR2B, is very potent and gives very dramatic effects in the mice," says Se-Jin Lee, M.D., Ph.D., a professor of molecular biology and genetics in Johns Hopkins’ Institute for Basic Biomedical Sciences. "Its effects were larger and faster than we’ve seen with any other agent, and they were even larger than we expected."

ACVR2B is the business end of a cellular docking point for the myostatin protein, and it probably works in part by mopping up myostatin so it can’t exert its muscle-inhibiting influence. But the researchers’ experiments also show that the new agent’s extra potency stems from its ability to block more than just myostatin, says Lee.

"We don’t know how many other muscle-limiting proteins there may be or which ones they are," says Lee, "but these experiments clearly show that myostatin is not the whole story."

The evidence for other players came from experiments with mighty mice themselves. Because these mice don’t have any myostatin, any effects of injecting the new agent would come from its effects on other proteins, explains Lee. After five injections over four weeks, mighty mice injected with the new agent had muscles 24 percent larger than their counterparts that didn’t get the new agent.

"In some ways this was supposed to be a control experiment," says Lee. "We weren’t really expecting to see an effect, let alone an effect that sizeable."

In other experiments with normal female mice, weekly injections of the new agent provided the biggest effect on muscle growth after just two weeks at the highest dose given (50 milligrams per kilogram mouse weight). Depending on the muscle group analyzed, the treated mice’s muscles were bigger than untreated mice by 39 percent (the gastrocnemius [calf] muscle) to 61 percent (the triceps).

After just one week, mice given a fifth of that highest dose had muscles 16 percent to 25 percent bigger than untreated mice, depending on the muscle group analyzed, and mice treated with one injection a week for two, three or four weeks continued to gain muscle mass.

But although the new agent seems quite promising, its advantage in potency also requires extra caution. "We don’t know what else the new agent is affecting or whether those effects will turn out to be entirely beneficial," says Lee.

Lee says they also are conducting experiments with the mice now to see whether the effect lasts after injections cease and whether it helps a mouse model of muscular dystrophy retain enough muscle strength to prolong life.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>