Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study: New muscle-building agent beats all previous ones

09.12.2005


The Johns Hopkins scientists who first created "mighty mice" have developed, with pharmaceutical company Wyeth and the biotechnology firm MetaMorphix, an agent that’s more effective at increasing muscle mass in mice than a related potential treatment for muscular dystrophy now in clinical trials.



The new agent is a version of a cellular docking point for the muscle-limiting protein myostatin. In mice, just two weekly injections of the new agent triggered a 60 percent increase in muscle size, the researchers report in the Proceedings of the National Academy of Sciences, published online Dec. 5 and available publicly through the journal’s website.

The researchers’ original mighty mice, created by knocking out the gene that codes for myostatin, grew muscles twice as big as normal mice. An antibody against myostatin now in clinical trials caused mice to develop muscles 25 percent larger than those of untreated mice after five weeks or more of treatment.


The researchers’ expectation is that blocking myostatin might help maintain critical muscle strength in people whose muscles are wasting due to diseases like muscular dystrophy or side effects from cancer treatment or AIDS.

"This new inhibitor of myostatin, known as ACVR2B, is very potent and gives very dramatic effects in the mice," says Se-Jin Lee, M.D., Ph.D., a professor of molecular biology and genetics in Johns Hopkins’ Institute for Basic Biomedical Sciences. "Its effects were larger and faster than we’ve seen with any other agent, and they were even larger than we expected."

ACVR2B is the business end of a cellular docking point for the myostatin protein, and it probably works in part by mopping up myostatin so it can’t exert its muscle-inhibiting influence. But the researchers’ experiments also show that the new agent’s extra potency stems from its ability to block more than just myostatin, says Lee.

"We don’t know how many other muscle-limiting proteins there may be or which ones they are," says Lee, "but these experiments clearly show that myostatin is not the whole story."

The evidence for other players came from experiments with mighty mice themselves. Because these mice don’t have any myostatin, any effects of injecting the new agent would come from its effects on other proteins, explains Lee. After five injections over four weeks, mighty mice injected with the new agent had muscles 24 percent larger than their counterparts that didn’t get the new agent.

"In some ways this was supposed to be a control experiment," says Lee. "We weren’t really expecting to see an effect, let alone an effect that sizeable."

In other experiments with normal female mice, weekly injections of the new agent provided the biggest effect on muscle growth after just two weeks at the highest dose given (50 milligrams per kilogram mouse weight). Depending on the muscle group analyzed, the treated mice’s muscles were bigger than untreated mice by 39 percent (the gastrocnemius [calf] muscle) to 61 percent (the triceps).

After just one week, mice given a fifth of that highest dose had muscles 16 percent to 25 percent bigger than untreated mice, depending on the muscle group analyzed, and mice treated with one injection a week for two, three or four weeks continued to gain muscle mass.

But although the new agent seems quite promising, its advantage in potency also requires extra caution. "We don’t know what else the new agent is affecting or whether those effects will turn out to be entirely beneficial," says Lee.

Lee says they also are conducting experiments with the mice now to see whether the effect lasts after injections cease and whether it helps a mouse model of muscular dystrophy retain enough muscle strength to prolong life.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>