Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the oceans microbes is key to the Earth’s future

09.12.2005


Life on Earth may owe its existence to tiny microorganisms living in the oceans, but the effect of human-induced change on the vital services these microbes perform for the planet remains largely unstudied, says a report released today by the American Academy of Microbiology, entitled Marine Microbial Diversity: The Key to Earth’s Habitability.

"Since life most likely began in the oceans, marine microorganisms are the closest living descendants of the original forms of life," says Jennie Hunter-Cevera of the University of Maryland Biotechnology Institute, one of the authors of the report, "They are also major pillars of the biosphere; their unique metabolisms allow marine microbes to carry out many steps of the biogeochemical cycles that other organisms are unable to complete. The smooth functioning of these cycles is necessary for life to continue on earth."

Early marine microorganisms also helped create the conditions under which subsequent life developed. More than two billion years ago, the generation of oxygen by photosynthetic marine microorganisms helped shape the chemical environment in which plants, animals, and all other life forms have evolved.



"A great deal of research on the biogeography of marine microorganisms has been carried out, but many unknowns persist and more work is needed to elucidate and understand their complexity," says co-author David Karl of the University of Hawaii. "Uppermost on this list of questions is what effects human-induced changes will have on the services marine microbes perform for the planet. Research on marine microbiology must continue or accelerate in order to solve these problems."

The report is the outcome of a colloquium convened by the Academy in April 2005 in San Francisco. Experts in microbial physiology, ecology, genetics, oceanography, invertebrate biology and virology gathered to discuss the importance of marine microorganisms to life on this planet, the biogeography of these organisms, their roles in symbiotic relationships and pathogenesis, their metabolic capabilities, their impacts on humans, and goals for research, training, and education in marine microbiology.

The report outlines a number of recommendations for future research in marine microbiology including the roles of both climate change and human activities on the populations and processes of marine microbes. The report also recommends fostering multidisciplinary collaborations and training as well as the development of a comprehensive marine microbiology textbook.

"Innovative approaches in research, education and training are critical for moving the field of marine microbiology forward," says Hunter-Cevera.

Angelo R. Bouselli | EurekAlert!
Further information:
http://www.asm.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>