Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How seizures progress to epilepsy in the young

09.12.2005


A major mystery in epilepsy research has been why infants are more prone to seizures than adults and how those seizures progress to chronic epilepsy. Now, researchers have discovered that central to those seizures in the developing brain are neurons triggered by the neurotransmitter GABA. They say their findings could lead to new ways to treat seizures in newborns. Also, they say, their findings suggest that the use of drugs that enhance GABA action may be particularly harmful to the newborn brain.



In adults, epilepsy is caused by hyperactivation of neuronal receptors triggered by the neurotransmitter glutamate. This excess activation unleashes the storm of uncontrolled nerve cell firing that underlies epilepsy. In contrast, in adults the neurotransmitter GABA acts on its receptors to inhibit neurons. Loss of this inhibition is also involved in epilepsy.

Neurotransmitters such as glutamate and GABA are chemical signals that one neuron launches at its neighbor across connections called synapses.


Yehezkel Ben-Ari and colleagues decided to explore a possible role of GABA-controlled neural circuitry in seizures in infant animals because it was known that, while GABA excites immature neurons, it changes to an inhibitory neurotransmitter in adult neurons.

In their experiments described in the December 8, 2005, issue of Neuron, they used a preparation in which they isolated in three separate compartments the left and right hippocampi of baby rats and the nerve fibers connecting them. The researchers studied the hippocampus because it is the brain area central to epilepsy.

With this experimental arrangement, they could use drugs to block GABA receptors and/or induce electrical seizure in one hippocampus and analyze whether such manipulations influenced seizure activity in the other. Such a spreading influence is a sign that individual seizures have caused development of a chronic epileptic state.

Their experiments revealed that the GABA-triggered neurons were involved in seizures in the immature brains and also that those seizures did lead to development of an epileptic state. They found that these GABA-triggered seizures featured so-called "fast oscillations" of electrical activity that are required to transform a "naive" network of neurons into an epileptic one.

In other experiments comparing immature and adult rat hippocampi, they found that although GABA-triggered neurons were also involved in seizures in adult brains, they were not required for development of epilepsy, as they were in immature hippocampi.

The researchers concluded that their studies showed that fast oscillations involved in seizures "are also directly implicated in epileptogenesis in the immature brain and lead to the production of a persistent chronic epileptic condition."

As the neuronal network matures, however, the density of synapses triggered by glutamate increases and the contribution of GABA-triggered synapses to fast oscillations and development of epilepsy decreases, they wrote.

"This information may be important both for understanding the deleterious consequences of seizures in newborns and for developing new therapeutic treatments for seizures in young infants," wrote Ben-Ari and colleagues. "Specifically, the permissive action of excitatory GABA suggests that GABA-acting drugs may exert deleterious actions at an early developmental stage in humans."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>