Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How seizures progress to epilepsy in the young

09.12.2005


A major mystery in epilepsy research has been why infants are more prone to seizures than adults and how those seizures progress to chronic epilepsy. Now, researchers have discovered that central to those seizures in the developing brain are neurons triggered by the neurotransmitter GABA. They say their findings could lead to new ways to treat seizures in newborns. Also, they say, their findings suggest that the use of drugs that enhance GABA action may be particularly harmful to the newborn brain.



In adults, epilepsy is caused by hyperactivation of neuronal receptors triggered by the neurotransmitter glutamate. This excess activation unleashes the storm of uncontrolled nerve cell firing that underlies epilepsy. In contrast, in adults the neurotransmitter GABA acts on its receptors to inhibit neurons. Loss of this inhibition is also involved in epilepsy.

Neurotransmitters such as glutamate and GABA are chemical signals that one neuron launches at its neighbor across connections called synapses.


Yehezkel Ben-Ari and colleagues decided to explore a possible role of GABA-controlled neural circuitry in seizures in infant animals because it was known that, while GABA excites immature neurons, it changes to an inhibitory neurotransmitter in adult neurons.

In their experiments described in the December 8, 2005, issue of Neuron, they used a preparation in which they isolated in three separate compartments the left and right hippocampi of baby rats and the nerve fibers connecting them. The researchers studied the hippocampus because it is the brain area central to epilepsy.

With this experimental arrangement, they could use drugs to block GABA receptors and/or induce electrical seizure in one hippocampus and analyze whether such manipulations influenced seizure activity in the other. Such a spreading influence is a sign that individual seizures have caused development of a chronic epileptic state.

Their experiments revealed that the GABA-triggered neurons were involved in seizures in the immature brains and also that those seizures did lead to development of an epileptic state. They found that these GABA-triggered seizures featured so-called "fast oscillations" of electrical activity that are required to transform a "naive" network of neurons into an epileptic one.

In other experiments comparing immature and adult rat hippocampi, they found that although GABA-triggered neurons were also involved in seizures in adult brains, they were not required for development of epilepsy, as they were in immature hippocampi.

The researchers concluded that their studies showed that fast oscillations involved in seizures "are also directly implicated in epileptogenesis in the immature brain and lead to the production of a persistent chronic epileptic condition."

As the neuronal network matures, however, the density of synapses triggered by glutamate increases and the contribution of GABA-triggered synapses to fast oscillations and development of epilepsy decreases, they wrote.

"This information may be important both for understanding the deleterious consequences of seizures in newborns and for developing new therapeutic treatments for seizures in young infants," wrote Ben-Ari and colleagues. "Specifically, the permissive action of excitatory GABA suggests that GABA-acting drugs may exert deleterious actions at an early developmental stage in humans."

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>