Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Headless Tadpoles and Cancer – Results of Defective Cellular Communication


Highly complex biochemical signaling systems tell body cells to divide, to stop growing or to specialize on specific tasks. Among the key cellular communication systems is the Wnt signaling pathway which controls embryonic development and also plays a role in the development of tumors. Scientists of the German Cancer Research Center (Deutsches Krebsforschungszen¬trum, DKFZ) have now been able to close a critical gap in our knowledge of this well-explored sequence of biochemical signals.

About 20 different members of the Wnt family of proteins start a signaling cascade that transmits commands from specific docking sites on the cell membrane across the cytoplasm to the nucleus. The cell responds to the signal by switching on or off specific genes. In the latest issue of Nature, a group of researchers headed by Professor Dr. Christof Niehrs describe the critical step of signal transduction from the cell membrane to the cytoplasm – a step that had been unknown so far. They demonstrated that an enzyme called casein kinase 1? (CK1?) is indispensable for transmitting Wnt signals from the cell membrane receptors into the cell.

In vertebrates, Wnt signals determine the formation of the body axes. The Heidelberg researchers use the effect of CK1y on embryos of the clawed frog Xenopus to demonstrate that CK1? is an important element of the Wnt signaling pathway. If CK1? is switched off in the frog embryo, this leads to the development of tadpoles with vestigial abdomens and enlarged heads. By contrast, if the investigators increase the CK1y level in the embryo, malformed headless tadpoles are the result. The function of CK1y is highly conserved in evolution: In the fruit fly Drosophila, blocking of CK1y also interrupts the Wnt signaling pathway.

Since alterations in various genes of the Wnt pathway are described in most of the common tumors, this cellular communication pathway is of central interest for cancer research. The more complete our knowledge of its individual steps, the more possibilites are opened up to interfere specifically with the defective communication of transformed cells using advanced therapeutic agents.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of can-cer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>