Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Headless Tadpoles and Cancer – Results of Defective Cellular Communication

09.12.2005


Highly complex biochemical signaling systems tell body cells to divide, to stop growing or to specialize on specific tasks. Among the key cellular communication systems is the Wnt signaling pathway which controls embryonic development and also plays a role in the development of tumors. Scientists of the German Cancer Research Center (Deutsches Krebsforschungszen¬trum, DKFZ) have now been able to close a critical gap in our knowledge of this well-explored sequence of biochemical signals.



About 20 different members of the Wnt family of proteins start a signaling cascade that transmits commands from specific docking sites on the cell membrane across the cytoplasm to the nucleus. The cell responds to the signal by switching on or off specific genes. In the latest issue of Nature, a group of researchers headed by Professor Dr. Christof Niehrs describe the critical step of signal transduction from the cell membrane to the cytoplasm – a step that had been unknown so far. They demonstrated that an enzyme called casein kinase 1? (CK1?) is indispensable for transmitting Wnt signals from the cell membrane receptors into the cell.

In vertebrates, Wnt signals determine the formation of the body axes. The Heidelberg researchers use the effect of CK1y on embryos of the clawed frog Xenopus to demonstrate that CK1? is an important element of the Wnt signaling pathway. If CK1? is switched off in the frog embryo, this leads to the development of tadpoles with vestigial abdomens and enlarged heads. By contrast, if the investigators increase the CK1y level in the embryo, malformed headless tadpoles are the result. The function of CK1y is highly conserved in evolution: In the fruit fly Drosophila, blocking of CK1y also interrupts the Wnt signaling pathway.


Since alterations in various genes of the Wnt pathway are described in most of the common tumors, this cellular communication pathway is of central interest for cancer research. The more complete our knowledge of its individual steps, the more possibilites are opened up to interfere specifically with the defective communication of transformed cells using advanced therapeutic agents.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of can-cer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de/de/abteilungen/fspa/a050.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>