Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nutritional genomics identifies a potential weight-loss resistance gene


Friedman School of Tufts: Nutrition notes

Two obese people follow the same low-calorie diet and do not exercise, but one loses much more weight than the other. Genetic factors may explain this phenomenon, according to José Ordovas, PhD, director of the Nutrition and Genomics Laboratory at the Jean Mayer USDA Human Nutrition Research Center on Aging (HNRCA) at Tufts University. In a study published in the Journal of Clinical Endocrinology & Metabolism, Ordovas and colleagues identified a variation in the perilipin gene that appears to render some people resistant to weight loss from calorie restriction. This research builds on their earlier work on perilipin and obesity.

"It is as if the connection between calorie intake and body weight is interrupted," explains Ordovas, who is also a professor at the Friedman School of Nutrition Science and Policy at Tufts. "Carriers of this gene variant appear to have more stable mechanisms for controlling their body weight," Ordovas says. "In people that have become obese, this leads to a blunting of the weight-loss effect we would expect to see with calorie restriction."

Andrew Greenberg, MD, director of the Obesity and Metabolism Laboratory at the USDA Center at Tufts, one of the scientists who discovered perilipin, notes that in an earlier study this same gene variant was linked with a lower risk of obesity, but in this study, it was associated with weight loss resistance.

"It may make sense," Greenberg says, "if we consider that this perilipin gene variant induces a sort of buffer against changes in how the body burns and stores food energy. It appears to protect against weight gain in lean women, while preventing weight loss in men and women who have become obese."

The clinical study was led by Dolores Corella, PhD, of the Genetic and Molecular Epidemiology Unit, University of Valencia, in Spain, who is a visiting scientist at the HNRCA and a long-term collaborator with Ordovas. These investigators studied 48 severely obese men and women who were following a low-calorie diet for one year. Subjects, who did have the more common variants of the perilipin gene lost an average of approximately 20 pounds during the study period. In contrast, carriers of the variant gene did not experience significant weight changes.

The researchers determined that the difference in weight loss between the two groups could not be explained by the fact that the variant gene carriers weighed less at the start of the study. When asked why the subjects had not lost more weight, Ordovas noted, "These subjects were closely followed during the study period and the compliance was considered to be excellent regardless of the perilipin genotype. Given the difficulty of keeping weight off long-term, the loss of 20 pounds is a significant achievement."

The perilipin gene controls the production of perilipin, a protein that regulates the release of fat from cells. The Tufts researchers’ earlier study linking two variations in the perilipin gene to a lower risk of obesity in women was described in a Friedman Nutrition Note released earlier this year, entitled, "Genetics Research Unlocks a Key Regulator of Weight in Women."

Ordovas cautions, "First of all, it is very important to point out that both of these studies were conducted on the same general ethnic population in Spain. We do not know what we might find in other countries or ethnic groups. And secondly," he adds, "nutritional genomics is not yet in a position to contribute significantly to treatment of obese patients. But we are finally beginning to piece together how genetics might be used in the future, perhaps to help predict who is likely to respond well to dietary weight-loss interventions."

Siobhan Gallagher | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>