Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Similar stem cells in insect and human gut

08.12.2005


The six-legged fruitfly appears to have little in common with humans, but a new finding shows that they are really just tiny, distant cousins. Scientists at the Carnegie Institution’s Department of Embryology have found that adult fruitflies have the same stem cells controlling cell regulation in their gut as humans do. The research is important for understanding digestive disorders, including some cancers, and for developing cures. "The fact that fruitflies have the same genetic programming in their intestines as humans, strongly suggests that we were both cut from the same evolutionary cloth more than 500 million years ago," stated lead author of the December 7, on-line Nature paper, Benjamin Ohlstein.


Watercolor illustration of Drosophila by Edith M. Wallace, Thomas Hunt Morgan’s illustrator. This image was published in C.B. Bridges and T.H. Morgan, Contributions to the Genetics of Drosophila melanogaster (Washington, DC: Carnegie Institution; 1919), CIW publication #278.



It may come as a surprise, but insects have the same basic structure to their gastrointestinal tract as vertebrates. They have a mouth, an esophagus, the equivalent to a stomach, and large and small intestines. The Carnegie researchers looked at their small intestines, where food is broken down into its constituent nutrients for the body to absorb. They focused on two cell types-- cells that line the small and large intestines in a single layer to help break up and transport food molecules, called enterocytes; and cells that produce peptide hormones, some of whose functions include regulation of gastric motility as well as growth and differentiation of the gut (enteroendocrine cells).

In vertebrates, cells of the intestines are continually replenished by stem cells. Up to now, stem cells had not been observed in the gut of the fruitfly. To see if stem cells were at work, the researchers labeled each of the two cell types of interest and observed how successive generations of the cells transformed. They found for the first time that, like their vertebrate cousins, the fly cell types are replenished by stem cells. Moreover, like vertebrates, the stem cells are multipotent, which means that they can turn into different cell types, and Notch signaling is as essential in flies in controlling which intestinal cells form as it is in humans. Notch signaling was also found to instruct stem cells themselves, a role that has as yet to be identified for Notch signaling in vertebrates.


Allan Spradling, co-author, director of the Carnegie department, and a Howard Hughes Medical Investigator commented, "We’re excited because we know from previous experience that studying a process in a model system, such as the fruitfly, can greatly accelerate our understanding of the corresponding human process."

Dr. Allan Spradling | EurekAlert!
Further information:
http://www.ciwemb.edu
http://www.CarnegieInstitution.org

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>