Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greyhounds and humans going round the bend

08.12.2005


New research published this week (8 December) has identified the fundamental differences between two and four legged animals that explain what limits their top speeds.



The research, published in the journals Nature and Biology Letters and funded by the Biotechnology and Biological Sciences Research Council (BBSRC), shows how a human running into a high-speed corner is forced to slow down and increase the amount of time their foot is in contact with the ground in order to withstand increased centripetal forces. Four legged animals do not appear to have this limitation.

The scientists at The Royal Veterinary College studied the results of 200m races at the 2004 Olympics and World Indoor Championships to demonstrate that the tighter bends used for the indoor event slow the runners down. To examine if this affects other animals they used high-speed video recording of greyhounds running time trials in an arena. Greyhounds barely change their stride when they sprint around and successfully withstand the increased forces. This is because they appear to power their running in a completely different way to humans.


Dr Jim Usherwood, the project leader, said, “Human sprinters use muscles to run that also have to deal with weight from the combination of centripetal and gravitational forces. Greyhounds get their motive power by torque around their hips and by extending their backs. This means that like a human on a bicycle there is a separation of the body structures providing power and the body structures supporting weight. A greyhound’s top speed is not constrained by cornering forces in the same way a human sprinter’s is.”

Dr Alan Wilson, head of the Royal Veterinary College’s Structure and Motion Laboratory, added, “Understanding the forces experienced by four-legged animals such as greyhounds and how their bodies deal with them means we can use them as a model to help improve the welfare of many animals. If we understand how animals work from a biomechanical perspective then we can understand how they suffer injuries and how they can best be cared for. The fundamental differences that we have shown between what limits running speed in four legged animals and in humans are important in understanding the mechanical limitations to performance and how different animals work.

Professor Julia Goodfellow, BBSRC Chief Executive, said, “Research such as this is important in helping us understand the biomechanics of humans and other animals. If we can gain an insight into how bodies actually move and work then we help to reduce injuries in humans and improve welfare for other animals.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>