Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the Amazon rainforest is so rich in species

07.12.2005


Tropical areas of south and central America such as the Amazon rainforest are home to some 7500 species of butterfly compared with only around 65 species in Britain. UCL scientists have ruled out the common theory that attributed this richness of wildlife to climate change, in a paper published on 7th December by the journal Proceedings of the Royal Society B (Biological Sciences).



Instead, scientists believe that biology played a far greater role in the evolution of species than external factors like prehistoric climate change. After conducting "DNA-clock" studies, which revealed that new species evolved at very variable rates, the scientists were able to conclude that external factors can only have had a limited impact on evolution.

This study’s remit was not to put forward new theories, but Professor Jim Mallet, UCL Department of Biology, argues that his team’s work shows that factors other than climate change play the greatest role in species evolution. He said: "Different types of rainforest butterflies in the Amazon basin are evolving at very different rates, not at all the pattern expected if forest refuges during the ice ages were causing the origin of new species – the reason normally given. Instead, we think that idiosyncratic features of the biology of each species, such as competition for food and their individual reactions to the environment dictate the pattern of evolution in each group."


Professor Mallet and PhD student Alaine Whinnett tested the "DNA clock" using the mitochondrial DNA of nine different butterfly species groups [genera] on the eastern side of the Andes in Eastern Peru. By using a "DNA clock" the scientists were able to calculate the age of the species within each group of species. If the DNA is similar between any pair of species, they must have split recently. If the DNA has diverged a great deal between species, the species are probably ancient.

Some groups contain very young and rapidly evolving species, such as the Amazonian tiger-stripe butterflies [the genus Melinaea], many of whose species are only a few hundred thousand years old. Other groups were very ancient and hadn’t produced many species over tens of millions of years, such as the clear-winged butterflies [the genus Oleria]. There was also a wide spectrum of ages in the other species they studied.

Because tests revealed that the species were of varying ages in the same geographical area, these scientists have concluded that external factors like climate change are unlikely to have had much impact on their evolution. Instead, the biology of each genus is thought to be more important.

Professor Mallet said: "It was a very simple molecular test but it rules out geographic isolation caused by past climate change as the main cause of species evolution. Instead the evolution of species must largely be caused by intrinsic biological features of each group of species."

He added: "This research is helping us understand the reasons behind the large number of species in the Amazon rainforest – it’s another piece of the biodiversity puzzle in place. Species split at very different rates, and their extinction or transformation is mostly determined by the ecology and biology of each species. We want to discover more about why some species survive and multiply, while others remain static or become extinct."

Around 40% of the world’s species can be found in the tropical areas of south and central America. Scientists have long believed that the wealth of species in tropical climes was caused by external forces such as climate change which split the rainforest up: leading to separate evolution in separate forest ’refuges’. In each refuge, it was thought that the isolated populations eventually developed into new species. In the Amazon basin, these changes were thought to have taken place during the Pleistocene geological age which started 1.6 million years ago.

In this theory, the Pleistocene ice ages trapped water near the poles, leading to reduced sea levels and supposedly to periods of profound drought in the tropics generally, and in the Amazon basin particularly. Forty years ago, evolutionary biologists proposed that such periods of drought led to rainforest refuges in which many new species of birds, butterflies, and plants arose.

Recent geological work, however, has failed to find much evidence of such forest refuges in the Amazon basin, and the Pleistocene refuge theory is now under question.

He said: "Although I do not believe that ice ages had much to do with the rapid evolution of species in the Amazon basin, the difference in numbers of species between the temperate zone and tropical South America can be explained by mass extinctions caused by the glaciations. Most species living in North America and Europe are relatively recent arrivals because the original inhabitants were wiped out by those ice ages. They haven’t had time to evolve into multiple species yet, whereas in the tropics the climate changes were less severe and so older species survived, and rapidly evolving groups were able to diversify without interruption."

Mallet’s team is now investigating particular groups of species to home in on the exact reason why some species evolve so rapidly, while others in the same rainforest do not split into new species for tens of millions of years.

Alex Brew | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>