Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why the Amazon rainforest is so rich in species

07.12.2005


Tropical areas of south and central America such as the Amazon rainforest are home to some 7500 species of butterfly compared with only around 65 species in Britain. UCL scientists have ruled out the common theory that attributed this richness of wildlife to climate change, in a paper published on 7th December by the journal Proceedings of the Royal Society B (Biological Sciences).



Instead, scientists believe that biology played a far greater role in the evolution of species than external factors like prehistoric climate change. After conducting "DNA-clock" studies, which revealed that new species evolved at very variable rates, the scientists were able to conclude that external factors can only have had a limited impact on evolution.

This study’s remit was not to put forward new theories, but Professor Jim Mallet, UCL Department of Biology, argues that his team’s work shows that factors other than climate change play the greatest role in species evolution. He said: "Different types of rainforest butterflies in the Amazon basin are evolving at very different rates, not at all the pattern expected if forest refuges during the ice ages were causing the origin of new species – the reason normally given. Instead, we think that idiosyncratic features of the biology of each species, such as competition for food and their individual reactions to the environment dictate the pattern of evolution in each group."


Professor Mallet and PhD student Alaine Whinnett tested the "DNA clock" using the mitochondrial DNA of nine different butterfly species groups [genera] on the eastern side of the Andes in Eastern Peru. By using a "DNA clock" the scientists were able to calculate the age of the species within each group of species. If the DNA is similar between any pair of species, they must have split recently. If the DNA has diverged a great deal between species, the species are probably ancient.

Some groups contain very young and rapidly evolving species, such as the Amazonian tiger-stripe butterflies [the genus Melinaea], many of whose species are only a few hundred thousand years old. Other groups were very ancient and hadn’t produced many species over tens of millions of years, such as the clear-winged butterflies [the genus Oleria]. There was also a wide spectrum of ages in the other species they studied.

Because tests revealed that the species were of varying ages in the same geographical area, these scientists have concluded that external factors like climate change are unlikely to have had much impact on their evolution. Instead, the biology of each genus is thought to be more important.

Professor Mallet said: "It was a very simple molecular test but it rules out geographic isolation caused by past climate change as the main cause of species evolution. Instead the evolution of species must largely be caused by intrinsic biological features of each group of species."

He added: "This research is helping us understand the reasons behind the large number of species in the Amazon rainforest – it’s another piece of the biodiversity puzzle in place. Species split at very different rates, and their extinction or transformation is mostly determined by the ecology and biology of each species. We want to discover more about why some species survive and multiply, while others remain static or become extinct."

Around 40% of the world’s species can be found in the tropical areas of south and central America. Scientists have long believed that the wealth of species in tropical climes was caused by external forces such as climate change which split the rainforest up: leading to separate evolution in separate forest ’refuges’. In each refuge, it was thought that the isolated populations eventually developed into new species. In the Amazon basin, these changes were thought to have taken place during the Pleistocene geological age which started 1.6 million years ago.

In this theory, the Pleistocene ice ages trapped water near the poles, leading to reduced sea levels and supposedly to periods of profound drought in the tropics generally, and in the Amazon basin particularly. Forty years ago, evolutionary biologists proposed that such periods of drought led to rainforest refuges in which many new species of birds, butterflies, and plants arose.

Recent geological work, however, has failed to find much evidence of such forest refuges in the Amazon basin, and the Pleistocene refuge theory is now under question.

He said: "Although I do not believe that ice ages had much to do with the rapid evolution of species in the Amazon basin, the difference in numbers of species between the temperate zone and tropical South America can be explained by mass extinctions caused by the glaciations. Most species living in North America and Europe are relatively recent arrivals because the original inhabitants were wiped out by those ice ages. They haven’t had time to evolve into multiple species yet, whereas in the tropics the climate changes were less severe and so older species survived, and rapidly evolving groups were able to diversify without interruption."

Mallet’s team is now investigating particular groups of species to home in on the exact reason why some species evolve so rapidly, while others in the same rainforest do not split into new species for tens of millions of years.

Alex Brew | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>