Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing for Parkinson disease, is there a point?

07.12.2005


Should we start being genetically tested for Parkinson’s disease (PD)? According to research just published in the December issue of the "journal Movement Disorders" this might be a possibility in the future if you belong to a family affected by G2019S, a genetic mutation responsible for some PD cases.



Parkinson disease results from the death or loss of function of the nervous cells (neurons) in a brain area called substancia nigra, which is involved in the regulation of movement. Neurons within this region produce dopamine, a neurotransmitter that acts as messenger between the substancia nigra (the control centre) and other neurons around the body, leading to a correct regulation of the body movements. If the substancia nigra degenerates, like it happens in PD, dopamine is no longer properly produced and the individual starts presenting the typical symptoms of Parkinson’s disease such as slowed movements, tremors, loss of movement control and rigidity.

Although there is still no cure, treatments, which increase the brain’s dopamine levels, are relatively effective. Unfortunately, as disease progresses, treatment becomes less and less efficient and the patient’s full deterioration is inevitable. The disease affects about 1% of the world population with, only in the US, half a million people affected and about 50,000 new cases are reported every year, a number predicted to increase as the average age of the populations also increases.


In fact, among the risks factors for PD, advanced age is the most important with more than 3% of the population above 65 years old affected. In a society where life expectancy has been increasing consistently, especially in the developed world, this situation can lead to major health and economic problems emphasising the urgency to understand better the disease.

Additionally, environmental factors also seem to have an important role in the regulation of PD although which factors, is still not clear. But it is believed that toxins, slowly accumulated over time, can induce disease. One example of this effect was the observation that MPTP (a by-product of synthetic heroin), which in the 80s was sold in the streets by mistake, was able to induce severe end stage parkinsonian symptoms in several young drug abusers as result of specific destruction of the substancia nigra, as later found by autopsy. Another example is the observation that PD incidence is much higher in rural areas what have led researchers to propose that toxins in herbicides or pesticides may cause or contribute to the disease. Interestingly, both caffeine consumption and smoking seem to diminish disease incidence.

Furthermore, individuals with a family history of PD also have a higher chance of suffering from the disease. Indeed, although for a long time favoured as an environmental triggered disease, in the last decade researchers have identified several (five so far) genes, which when mutated can lead to PD.

Nevertheless, until very recently the number and importance of the cases resulting from genetic mutations was considered too low to be relevant in the overall disease panorama. This idea only started to change with the last discovered gene, LRRK2. In fact, LRRK2 mutations seem be particularly frequent accounting for 3 -6% of PD familial cases (when the mutation in inherited and so found within families in more than one individual) and around 2% of PD sporadic cases (when the mutation occurs occasionally in a random and isolated manner). These high numbers have led to a series of studies investigating the gene and its mutations in order to understand better the epidemiological importance of LRRK2.

José Miguel Bras, Rita João Guerreiro, Andrew Singleton and colleagues from Portugal and the USA decided to investigate, in a Portuguese group of 128 patients and 1400 healthy individuals, what they previously found to be the two most common LRRK2 mutations. They discovered that while one of the mutations could not be found among their patients, the other, called G2019S, was found in a remarkably high number of individuals - about 6% of the total number of patients. Very interestingly, it was also found that all the individuals with G2019S suffered from disease, while none of the healthy controls had the mutation. This suggests that G2019S is a pathogenic mutation, meaning that when it occurs in an individual it will always result in disease, in contrast with other mutations where only a fraction of the affected individuals will suffer from the illness. This conclusion was supported by previous research by the same scientists, which showed the same disease pattern in two American families with G2019S, and again a total absence of the mutation in more than 1500 healthy controls this time from the US.

Guerreiro, Singleton and colleagues’ work is important not only because it helps to understand better the dynamics of PD, but because it raises the issue of genetic testing for Parkinson’s disease among G2019S affected families or even high-risk populations. In fact, not only G2019S seems to be present in a high number of PD patients, but also is a pathogenic mutation that will lead to disease sooner or later. Genetic testing of a non-curable fatal disease is not an easy option but, although there is still no cure for Parkinson’s disease, early diagnosis and consequent treatment might result in a longer healthier life and in this sense might be a wise, even if difficult, choice for patients

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.linacre.ox.ac.uk
http://www3.interscience.wiley.com/cgi-bin/abstract/111090322/ABSTRACT

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>