Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing for Parkinson disease, is there a point?

07.12.2005


Should we start being genetically tested for Parkinson’s disease (PD)? According to research just published in the December issue of the "journal Movement Disorders" this might be a possibility in the future if you belong to a family affected by G2019S, a genetic mutation responsible for some PD cases.



Parkinson disease results from the death or loss of function of the nervous cells (neurons) in a brain area called substancia nigra, which is involved in the regulation of movement. Neurons within this region produce dopamine, a neurotransmitter that acts as messenger between the substancia nigra (the control centre) and other neurons around the body, leading to a correct regulation of the body movements. If the substancia nigra degenerates, like it happens in PD, dopamine is no longer properly produced and the individual starts presenting the typical symptoms of Parkinson’s disease such as slowed movements, tremors, loss of movement control and rigidity.

Although there is still no cure, treatments, which increase the brain’s dopamine levels, are relatively effective. Unfortunately, as disease progresses, treatment becomes less and less efficient and the patient’s full deterioration is inevitable. The disease affects about 1% of the world population with, only in the US, half a million people affected and about 50,000 new cases are reported every year, a number predicted to increase as the average age of the populations also increases.


In fact, among the risks factors for PD, advanced age is the most important with more than 3% of the population above 65 years old affected. In a society where life expectancy has been increasing consistently, especially in the developed world, this situation can lead to major health and economic problems emphasising the urgency to understand better the disease.

Additionally, environmental factors also seem to have an important role in the regulation of PD although which factors, is still not clear. But it is believed that toxins, slowly accumulated over time, can induce disease. One example of this effect was the observation that MPTP (a by-product of synthetic heroin), which in the 80s was sold in the streets by mistake, was able to induce severe end stage parkinsonian symptoms in several young drug abusers as result of specific destruction of the substancia nigra, as later found by autopsy. Another example is the observation that PD incidence is much higher in rural areas what have led researchers to propose that toxins in herbicides or pesticides may cause or contribute to the disease. Interestingly, both caffeine consumption and smoking seem to diminish disease incidence.

Furthermore, individuals with a family history of PD also have a higher chance of suffering from the disease. Indeed, although for a long time favoured as an environmental triggered disease, in the last decade researchers have identified several (five so far) genes, which when mutated can lead to PD.

Nevertheless, until very recently the number and importance of the cases resulting from genetic mutations was considered too low to be relevant in the overall disease panorama. This idea only started to change with the last discovered gene, LRRK2. In fact, LRRK2 mutations seem be particularly frequent accounting for 3 -6% of PD familial cases (when the mutation in inherited and so found within families in more than one individual) and around 2% of PD sporadic cases (when the mutation occurs occasionally in a random and isolated manner). These high numbers have led to a series of studies investigating the gene and its mutations in order to understand better the epidemiological importance of LRRK2.

José Miguel Bras, Rita João Guerreiro, Andrew Singleton and colleagues from Portugal and the USA decided to investigate, in a Portuguese group of 128 patients and 1400 healthy individuals, what they previously found to be the two most common LRRK2 mutations. They discovered that while one of the mutations could not be found among their patients, the other, called G2019S, was found in a remarkably high number of individuals - about 6% of the total number of patients. Very interestingly, it was also found that all the individuals with G2019S suffered from disease, while none of the healthy controls had the mutation. This suggests that G2019S is a pathogenic mutation, meaning that when it occurs in an individual it will always result in disease, in contrast with other mutations where only a fraction of the affected individuals will suffer from the illness. This conclusion was supported by previous research by the same scientists, which showed the same disease pattern in two American families with G2019S, and again a total absence of the mutation in more than 1500 healthy controls this time from the US.

Guerreiro, Singleton and colleagues’ work is important not only because it helps to understand better the dynamics of PD, but because it raises the issue of genetic testing for Parkinson’s disease among G2019S affected families or even high-risk populations. In fact, not only G2019S seems to be present in a high number of PD patients, but also is a pathogenic mutation that will lead to disease sooner or later. Genetic testing of a non-curable fatal disease is not an easy option but, although there is still no cure for Parkinson’s disease, early diagnosis and consequent treatment might result in a longer healthier life and in this sense might be a wise, even if difficult, choice for patients

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.linacre.ox.ac.uk
http://www3.interscience.wiley.com/cgi-bin/abstract/111090322/ABSTRACT

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>