Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Size matters to a plant, but how is it controlled?


Scientists at the John Innes Centre(JIC), Norwich, UK [1] today report a discovery that explains how plants control the size and development of their cells. Published on-line by the international journal PNAS [2] the report describes how a gene (called RHL1)[3] affects a plant cell’s ability to make multiple copies of its DNA, in turn affecting cell growth and overall plant development.

“Unlike the cells of animals, plant cells typically expand to up to 1,000 times their original size as they develop” says Dr Keiko Sugimoto-Shirasu (project leader at JIC). “We don’t know a lot about how this is controlled but it is often the result of the cell making multiple copies of its DNA (so-called endoreduplication), which then stimulates this massive cell growth. Our discovery has given us an exciting insight into how plant cells actually manage all these extra copies of DNA and shown us that the process is much more sophisticated than we imagined”.

The researchers at JIC were using the common weed Thale Cress (Arabidopsis thaliana) to study the control of cell size and the endoreduplication process. They identified a mutation (called hyp7) that caused seedlings to be dwarf, because their cells did not expand normally. When they compared the damaged gene, which causes the mutation, with known genes they discovered it is a gene that is known to affect root hair production on the roots of plants – hence its name root hairless or rhl.

Hyp7 (or rhl) has similarities to other known genes from animals and bacteria. In this case the genes are known to be important in DNA replication. In fact they have a very specific role in unravelling the DNA double helix to allow it to be copied (replicated). So it seems that the hyp7/rhl gene has a key part in enabling plant cells to make multiple copies of their DNA and so is vital to cell expansion and normal development[4].

Dr Sugimoto-Shirasu concludes, “our discovery is an exciting and important piece in the much larger jigsaw of understanding how plants, which are full of complex tissues and organs, develop from the same relatively simple starting point – the cell. The more we understand about plant development the better placed we are to modify crop plants to be more productive and less dependent on chemical and other inputs”.

1. The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

2. PNAS – Proceedings of the National Academy of Sciences USA. Online early edition is available at
PNAS can be contacted at 202-334-1310 or

3. RHL – roothairless – is one of a family of at least 3 plant genes that are important in determining root hair formation on plant roots. RHL1 produces a protein that is targeted to the nucleus of the plant cell but its function is unknown.

4. One strategy to increase cell size is for the plant cells to amplify their chromosomal DNA content through endoreduplication cycles. Although
endoreduplication is widespread in eukaryotes, we know very little about its molecular mechanisms. Successful progression of the endoreduplication cycle in Arabidopsis requires a plant homologue of archaeal DNA topoisomerase (topo) VI.

Hyp7 (hypocotyls 7) is a dwarf Arabidopsis mutant in which various large cell types that in the wild type normally endoreduplicate multiple times complete only the first two rounds of endoreduplication and stall at 8C. It was identified from a mutant screen for dark-grown short-hypocotyl phenotypes. HYP7 encodes the RHL1 (ROOT HAIRLESS 1) protein, and sequence analysis reveals that RHL1 has similarity to the mammalian DNA topoisomerase II. RHL1 shows DNA binding activity in vitro, and we have in vivo evidence that RHL1 forms a multiprotein complex with plant topoisomerase VI. RHL1 plays an essential role in the topoisomerase VI complex to modulate its function and that plant topoisomerase II and topoisomerase VI play distinct but overlapping roles during the mitotic cell cycle and endoreduplication cycle.

It seems the RHL protein plays an essential role in successive endocycles as a component of the plant topoisomerase VI complex and enables plant cells to unravel entangled chromosomes during endocycles above 8C.

Dr Keiko Sugimoto-Shirasu | alfa
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>