Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Size matters to a plant, but how is it controlled?

07.12.2005


Scientists at the John Innes Centre(JIC), Norwich, UK [1] today report a discovery that explains how plants control the size and development of their cells. Published on-line by the international journal PNAS [2] the report describes how a gene (called RHL1)[3] affects a plant cell’s ability to make multiple copies of its DNA, in turn affecting cell growth and overall plant development.



“Unlike the cells of animals, plant cells typically expand to up to 1,000 times their original size as they develop” says Dr Keiko Sugimoto-Shirasu (project leader at JIC). “We don’t know a lot about how this is controlled but it is often the result of the cell making multiple copies of its DNA (so-called endoreduplication), which then stimulates this massive cell growth. Our discovery has given us an exciting insight into how plant cells actually manage all these extra copies of DNA and shown us that the process is much more sophisticated than we imagined”.

The researchers at JIC were using the common weed Thale Cress (Arabidopsis thaliana) to study the control of cell size and the endoreduplication process. They identified a mutation (called hyp7) that caused seedlings to be dwarf, because their cells did not expand normally. When they compared the damaged gene, which causes the mutation, with known genes they discovered it is a gene that is known to affect root hair production on the roots of plants – hence its name root hairless or rhl.


Hyp7 (or rhl) has similarities to other known genes from animals and bacteria. In this case the genes are known to be important in DNA replication. In fact they have a very specific role in unravelling the DNA double helix to allow it to be copied (replicated). So it seems that the hyp7/rhl gene has a key part in enabling plant cells to make multiple copies of their DNA and so is vital to cell expansion and normal development[4].

Dr Sugimoto-Shirasu concludes, “our discovery is an exciting and important piece in the much larger jigsaw of understanding how plants, which are full of complex tissues and organs, develop from the same relatively simple starting point – the cell. The more we understand about plant development the better placed we are to modify crop plants to be more productive and less dependent on chemical and other inputs”.

1. The John Innes Centre (JIC), Norwich, UK is an independent, world-leading research centre in plant and microbial sciences. The JIC has over 800 staff and students. JIC carries out high quality fundamental, strategic and applied research to understand how plants and microbes work at the molecular, cellular and genetic levels. The JIC also trains scientists and students, collaborates with many other research laboratories and communicates its science to end-users and the general public. The JIC is grant-aided by the Biotechnology and Biological Sciences Research Council.

2. PNAS – Proceedings of the National Academy of Sciences USA. Online early edition is available at http://www.pnas.org/papbyrecent.shtml.
PNAS can be contacted at 202-334-1310 or PNASNews@nas.edu

3. RHL – roothairless – is one of a family of at least 3 plant genes that are important in determining root hair formation on plant roots. RHL1 produces a protein that is targeted to the nucleus of the plant cell but its function is unknown.

4. One strategy to increase cell size is for the plant cells to amplify their chromosomal DNA content through endoreduplication cycles. Although
endoreduplication is widespread in eukaryotes, we know very little about its molecular mechanisms. Successful progression of the endoreduplication cycle in Arabidopsis requires a plant homologue of archaeal DNA topoisomerase (topo) VI.

Hyp7 (hypocotyls 7) is a dwarf Arabidopsis mutant in which various large cell types that in the wild type normally endoreduplicate multiple times complete only the first two rounds of endoreduplication and stall at 8C. It was identified from a mutant screen for dark-grown short-hypocotyl phenotypes. HYP7 encodes the RHL1 (ROOT HAIRLESS 1) protein, and sequence analysis reveals that RHL1 has similarity to the mammalian DNA topoisomerase II. RHL1 shows DNA binding activity in vitro, and we have in vivo evidence that RHL1 forms a multiprotein complex with plant topoisomerase VI. RHL1 plays an essential role in the topoisomerase VI complex to modulate its function and that plant topoisomerase II and topoisomerase VI play distinct but overlapping roles during the mitotic cell cycle and endoreduplication cycle.

It seems the RHL protein plays an essential role in successive endocycles as a component of the plant topoisomerase VI complex and enables plant cells to unravel entangled chromosomes during endocycles above 8C.

Dr Keiko Sugimoto-Shirasu | alfa
Further information:
http://www.bbsrc.ac.uk
http://www.jic.ac.uk

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>