Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas scientists discover how a hepatitis C protein promotes liver cancer

06.12.2005


Texas--Scientists at the University of Texas Medical Branch at Galveston (UTMB) have identified a key biochemical connection between the hepatitis C virus and liver cancer.



The molecular mechanism is similar to the one that links the human papilloma virus (HPV), the cause of genital warts, and cervical cancer, according to Dr. Stanley M. Lemon, the senior author of a paper on the discovery that will be published this week in the online early edition of the Proceedings of the National Academy of Sciences.

"What we’ve found is that one of the hepatitis C virus proteins targets a cell protein that is crucial for suppressing the development of tumors, interfering with its ability to control cell proliferation," Lemon said. "By knocking out this ’tumor suppressor’ and promoting the proliferation of liver cells, this viral protein is setting up the liver for cancer."


According to the federal Centers for Disease Control and Prevention, about 85 percent of liver cancer cases in the United States occur in people infected by the hepatitis C virus. Approximately 200 million people worldwide suffer from chronic hepatitis C, which can persist in the body for decades after an initial infection, often causing so much liver damage that a transplant may be a patient’s only chance for survival. The most effective treatment available, interferon therapy, works only about half the time and often causes debilitating side effects. Those who fail treatment are at risk for fatal cirrhosis or developing liver cancer.

Researchers have known for a long time that hepatitis C virus infection can lead to liver cancer. But how the virus goes about this has been unclear.

The UTMB group discovered that the tumor-suppressing retinoblastoma protein is present at markedly reduced levels in cells containing a hepatitis C virus "replicon," a large piece of hepatitis C genetic material that is able to reproduce itself in cultured cells and also able to produce proteins made by hepatitis C viruses. "The replicon experiments enabled us to identify a protein known as NS5B that attaches to the retinoblastoma protein, a critical tumor suppressor, and accelerates its breakdown," Lemon said. He continued: "The way NS5B docks with the retinoblastoma protein is biochemically almost identical to the way a protein made by human papilloma virus does so to produce similar cancer-promoting results. That’s interesting, because the two viruses are so different --HPV is a DNA virus, while hepatitis C is composed of RNA."

Understanding just how hepatitis C infection leads to the development of cancer is of critical importance, Lemon said. With no one "silver bullet" cure for hepatitis C on the horizon, he explained, researchers must use new knowledge to maximize the effectiveness of various virus-fighting therapies now under development, managing the care of chronically infected patients in ways that will best help them avoid liver cancer.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>