Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas scientists discover how a hepatitis C protein promotes liver cancer

06.12.2005


Texas--Scientists at the University of Texas Medical Branch at Galveston (UTMB) have identified a key biochemical connection between the hepatitis C virus and liver cancer.



The molecular mechanism is similar to the one that links the human papilloma virus (HPV), the cause of genital warts, and cervical cancer, according to Dr. Stanley M. Lemon, the senior author of a paper on the discovery that will be published this week in the online early edition of the Proceedings of the National Academy of Sciences.

"What we’ve found is that one of the hepatitis C virus proteins targets a cell protein that is crucial for suppressing the development of tumors, interfering with its ability to control cell proliferation," Lemon said. "By knocking out this ’tumor suppressor’ and promoting the proliferation of liver cells, this viral protein is setting up the liver for cancer."


According to the federal Centers for Disease Control and Prevention, about 85 percent of liver cancer cases in the United States occur in people infected by the hepatitis C virus. Approximately 200 million people worldwide suffer from chronic hepatitis C, which can persist in the body for decades after an initial infection, often causing so much liver damage that a transplant may be a patient’s only chance for survival. The most effective treatment available, interferon therapy, works only about half the time and often causes debilitating side effects. Those who fail treatment are at risk for fatal cirrhosis or developing liver cancer.

Researchers have known for a long time that hepatitis C virus infection can lead to liver cancer. But how the virus goes about this has been unclear.

The UTMB group discovered that the tumor-suppressing retinoblastoma protein is present at markedly reduced levels in cells containing a hepatitis C virus "replicon," a large piece of hepatitis C genetic material that is able to reproduce itself in cultured cells and also able to produce proteins made by hepatitis C viruses. "The replicon experiments enabled us to identify a protein known as NS5B that attaches to the retinoblastoma protein, a critical tumor suppressor, and accelerates its breakdown," Lemon said. He continued: "The way NS5B docks with the retinoblastoma protein is biochemically almost identical to the way a protein made by human papilloma virus does so to produce similar cancer-promoting results. That’s interesting, because the two viruses are so different --HPV is a DNA virus, while hepatitis C is composed of RNA."

Understanding just how hepatitis C infection leads to the development of cancer is of critical importance, Lemon said. With no one "silver bullet" cure for hepatitis C on the horizon, he explained, researchers must use new knowledge to maximize the effectiveness of various virus-fighting therapies now under development, managing the care of chronically infected patients in ways that will best help them avoid liver cancer.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>