Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas scientists discover how a hepatitis C protein promotes liver cancer

06.12.2005


Texas--Scientists at the University of Texas Medical Branch at Galveston (UTMB) have identified a key biochemical connection between the hepatitis C virus and liver cancer.



The molecular mechanism is similar to the one that links the human papilloma virus (HPV), the cause of genital warts, and cervical cancer, according to Dr. Stanley M. Lemon, the senior author of a paper on the discovery that will be published this week in the online early edition of the Proceedings of the National Academy of Sciences.

"What we’ve found is that one of the hepatitis C virus proteins targets a cell protein that is crucial for suppressing the development of tumors, interfering with its ability to control cell proliferation," Lemon said. "By knocking out this ’tumor suppressor’ and promoting the proliferation of liver cells, this viral protein is setting up the liver for cancer."


According to the federal Centers for Disease Control and Prevention, about 85 percent of liver cancer cases in the United States occur in people infected by the hepatitis C virus. Approximately 200 million people worldwide suffer from chronic hepatitis C, which can persist in the body for decades after an initial infection, often causing so much liver damage that a transplant may be a patient’s only chance for survival. The most effective treatment available, interferon therapy, works only about half the time and often causes debilitating side effects. Those who fail treatment are at risk for fatal cirrhosis or developing liver cancer.

Researchers have known for a long time that hepatitis C virus infection can lead to liver cancer. But how the virus goes about this has been unclear.

The UTMB group discovered that the tumor-suppressing retinoblastoma protein is present at markedly reduced levels in cells containing a hepatitis C virus "replicon," a large piece of hepatitis C genetic material that is able to reproduce itself in cultured cells and also able to produce proteins made by hepatitis C viruses. "The replicon experiments enabled us to identify a protein known as NS5B that attaches to the retinoblastoma protein, a critical tumor suppressor, and accelerates its breakdown," Lemon said. He continued: "The way NS5B docks with the retinoblastoma protein is biochemically almost identical to the way a protein made by human papilloma virus does so to produce similar cancer-promoting results. That’s interesting, because the two viruses are so different --HPV is a DNA virus, while hepatitis C is composed of RNA."

Understanding just how hepatitis C infection leads to the development of cancer is of critical importance, Lemon said. With no one "silver bullet" cure for hepatitis C on the horizon, he explained, researchers must use new knowledge to maximize the effectiveness of various virus-fighting therapies now under development, managing the care of chronically infected patients in ways that will best help them avoid liver cancer.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>