Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Childhood Brain Tumors: Molecular Marker to Facilitate Prognosis and Treatment Planning

06.12.2005


Valuable results for the complex jigsaw puzzle of cancer development



CDK6 is the plain name of a molecule that is often characteristically altered in medulloblastoma. This type of cancer is among the most common malignant brain tumors in children. Heidelberg molecular geneticians of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) have now found out that CDK6 can serve as an important indicator to help physicians determine the prognosis of patients. The results obtained in a project of the National Genome Research Network within the Brain Tumor Network have been published in the latest issue of the Journal of Clinical Oncology.

The typical age at the onset of medulloblastoma is seven years. Frequently, the tumor has already spread to other parts of the body. Despite intensive treatment almost half of the young patients die of this cancer. To be able to evaluate the course of such a tumor disease based on characteristic molecular markers and to develop novel treatment strategies, cancer researchers are trying to elucidate the development of the disease.


Frank Mendrzyk and Dr. Bernhard Radlwimmer of the Molecular Genetics Division have now contributed an important puzzle piece. The two researchers used the matrix-CGH technology developed by their divisional head Professor Peter Lichter to identify genetic alterations in medulloblastoma. Working with tissue samples of brain tumors they started by searching the whole genome for overrepresented and underrepresented segments of genetic material. Then they used immunological detection methods to investigate how identified candidate genes of these regions and their products are interconnected with the stage and course of the disease. This study was based on tumor tissue obtained from more than 200 patients whose medical records are known. The investigators found out that an increased number of gene copies is associated with overproduction of CDK6 and an unfavorable course of the disease. The gene located on chromosome 7 appears to play a key role in signaling pathways influencing growth and differentiation of medulloblastoma cells and other tumor cells. Compared to previously available markers, CDK6 seems to be an independent and at the same time more reliable source of information. Moreover, the gene product is easy to detect with immunological methods that are already established in routine diagnostics. CDK6 is also useful in clinical trials when it comes to evaluating the response to a treatment strategy.

The molecular geneticians have even more valuable findings to present. A factor called PPM1D is typically overproduced in medulloblastoma due to amplification of DNA segments on chromosome 17. The gene is not unknown to scientists. It is also found in multiple copies in neuroblastoma as well as in breast and ovarian cancer. Earlier publications have presented evidence suggesting that these alterations of the genetic information play a role in cancer development. Thus, other scientists showed in mouse embryonic cells that PPM1D is capable of abrogating the function of tumor suppressor gene TP53. TP53, jointly with other genes, regulates cell multiplication and thus reduces the likelihood of a cell turning into a tumor cell. Conversely, cells were resistant to transformation when they lacked PPM1D.

Further analyses and functional studies need to be performed in order to understand the exact role these genes play in the development of medulloblastoma. Eventually, cancer researchers are hoping to use this knowledge to find new targets for therapies and thus positively influence the course of the disease.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de/en/genetics/index.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>