Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unlock solid tumor treatment genetic secrets

05.12.2005


Study suggests that histone deacetylase enzymes cooperating with CBP/p300 histone acetylases trigger expression of many genes that respond to hypoxia, according to St. Jude



A biochemical mechanism that cells use to cope with hypoxia (lack of oxygen) actually cooperates with a less well-known mechanism that helps increase the expression of those hypoxia-sensitive genes, according to investigators at St. Jude Children’s Research Hospital.

The two mechanisms each enable a transcription factor called hypoxia-inducible factor (HIF) to increase expression of genes that the cell uses to respond to the stress of hypoxia. Transcription factors bind to a site on the gene called the promoter and trigger the process that decodes the gene and makes the protein for which that gene codes. HIF binds to and activates many genes that contribute to the survival response of tumors; for example, genes that control biochemical reactions that don’t require oxygen to extract energy from glucose or genes needed to build new blood vessels that bring additional oxygen to hypoxic cells.


The St. Jude finding is important because it suggests that developing new therapies that interfere with both mechanisms instead of just one might enhance the efficacy of treatments designed for solid tumors that become hypoxic as they outgrow their oxygen supply, according to Paul Brindle, Ph.D., an associate member of the Department of Biochemistry. Brindle is senior author of a report on this work that appeared in November 16 issue of The EMBO Journal.

The St. Jude researchers showed that, in addition to a mechanism controlled by two proteins called CBP and p300 (CBP/p300 collectively), a second mechanism that appears to use an enzyme called a histone deacetylase (HDAC) contributes significantly to increasing the expression of hypoxia-sensitive genes. The investigators also found evidence that suggests HIF might activate genes by a third type of biochemical pathway. If true, this would further expand the range of potential strategies for treating solid tumors.

HIF is unstable and cannot work well when the cell contains a normal amount of oxygen. But when oxygen levels are so low they stress the cell, HIF becomes stable and binds to specific genes. Once on a target gene, HIF recruits CBP and p300, each of which contains a section called the CH1 domain. The CH1 domain of each protein binds to a section of HIF called the C-TAD. This binding of the CH1 domain to the C-TAD prompts HIF to turn on the gene. Because CBP and p300 each help HIF activate genes, they are called co-activators.

CBP and p300 belong to a group of coactivators called acetylases, and have long been thought to bind to HIF during the cell’s response to hypoxia, but definitive evidence for this occurring in cells was previously lacking. In contrast, HDACs were thought to be proteins that interfere with the expression of genes. Unexpectedly, the St. Jude team discovered that a drug-like inhibitor of HDACs called TSA interferes with the ability of HIF to turn on a large number of genes during times of hypoxia. The study further suggests that HDACs appear to cooperate with CBP/p300 to help HIF trigger the expression of most of the approximately 40 HIF responsive genes tested. The study also showed that different HIF-targeted genes rely to various degrees on the CH1 domain and the mechanism sensitive to TSA.

"This finding was surprising because until now it was generally accepted that acetylases are involved in activating genes, while deacetylases were mostly thought to have the opposite effect," Brindle said. "That increases our appreciation for the complexity of the control of HIF-responsive genes. That is important for future studies on how to manipulate these mechanisms to treat diseases linked to hypoxia."

Brindle’s team studied HIF activation in laboratory models that had mutations that eliminated the CH1 domain in either or both of the genes for CBP and p300. The investigators found that certain genes whose activity could be induced by hypoxia were moderately to strongly dependent on the CH1 domain. One of these genes, Vegf, is important for the growth of new blood vessels, while another gene, Slc2a1, is important in bringing glucose into the cell for energy.

In addition, the St. Jude team discovered that some genes continue to be expressed fairly well even when both the CH1 and HDAC mechanisms are disrupted. This suggests that there are other coactivators, or that other domains on CBP and p300 in addition to CH1 work with HIF to activate gene expression. Alternatively, transcription factors other than HIF may mediate part of the response to hypoxia.

"Our study clearly showed that there is more to activating HIF-responsive gene expression than just the previously recognized CBP/p300 mechanism," said Lawryn H. Kasper, Ph.D., a research laboratory specialist in Brindle’s laboratory. "In fact, not only does a mechanism involving HDAC appear to play a major role; but there is also evidence for a completely different pathway." Kasper is the first author of the article and together with her co-worker Fayçal Boussouar, Ph.D., did most of the work on this study.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>