Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone researchers identify new drug target for Alzheimer’s disease

05.12.2005


Researchers at the Gladstone Institute of Neurological Disease have identified a potential new way to stop brain cell death related to Alzheimer’s disease.

Working with cell cultures, the scientists investigated how amyloid beta proteins, which build up in the brain tissue of people with Alzheimer’s disease, kill neurons. The cell cultures were established from brain tissue of laboratory rats. Study findings showed that amyloid beta could be prevented from causing neuronal cell death with a compound called resveratrol, which is also found as a natural ingredient in red wine.

"Our study suggests that resveratrol and related compounds may protect against neuronal loss associated with Alzheimer’s disease," explains senior author Li Gan, PhD, a staff research investigator at the Gladstone Institute of Neurological Disease and an assistant professor of neurology at UC San Francisco. "This could certainly open up new avenues for drug development."



The research results are reported in the December 2 issue of the Journal of Biological Chemistry.

According to the research team, it was particularly interesting that the beneficial effect of resveratrol was not due to a direct impact on amyloid beta or on neurons but rather on other types of brain cells, called microglia.

Microglia are the immune cells of the brain. They can protect or hurt neurons, depending on which of their powerful defense or attack pathways are activated. The investigators found that amyloid beta triggers a pathway in microglia that makes them attack neurons with poisonous chemicals. A key mediator in this pathway is a protein called NF-kB, which resveratrol happens to block. Without resveratrol, amyloid beta activates NF-kB in microglia, turning them into powerful neuron killing machines. Researchers found that, in the presence of resveratrol or of other molecules that blocked NF-kB, microglia were well behaved, and amyloid beta was unable to harm the neurons.

The study thus pinpoints NF-êB as an important contributor to the destructive power of amyloid beta, making it a key drug target, and it singles out resveratrol as holding the most promise for therapeutic intervention.

John Watson | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>