Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gladstone researchers identify new drug target for Alzheimer’s disease

05.12.2005


Researchers at the Gladstone Institute of Neurological Disease have identified a potential new way to stop brain cell death related to Alzheimer’s disease.

Working with cell cultures, the scientists investigated how amyloid beta proteins, which build up in the brain tissue of people with Alzheimer’s disease, kill neurons. The cell cultures were established from brain tissue of laboratory rats. Study findings showed that amyloid beta could be prevented from causing neuronal cell death with a compound called resveratrol, which is also found as a natural ingredient in red wine.

"Our study suggests that resveratrol and related compounds may protect against neuronal loss associated with Alzheimer’s disease," explains senior author Li Gan, PhD, a staff research investigator at the Gladstone Institute of Neurological Disease and an assistant professor of neurology at UC San Francisco. "This could certainly open up new avenues for drug development."



The research results are reported in the December 2 issue of the Journal of Biological Chemistry.

According to the research team, it was particularly interesting that the beneficial effect of resveratrol was not due to a direct impact on amyloid beta or on neurons but rather on other types of brain cells, called microglia.

Microglia are the immune cells of the brain. They can protect or hurt neurons, depending on which of their powerful defense or attack pathways are activated. The investigators found that amyloid beta triggers a pathway in microglia that makes them attack neurons with poisonous chemicals. A key mediator in this pathway is a protein called NF-kB, which resveratrol happens to block. Without resveratrol, amyloid beta activates NF-kB in microglia, turning them into powerful neuron killing machines. Researchers found that, in the presence of resveratrol or of other molecules that blocked NF-kB, microglia were well behaved, and amyloid beta was unable to harm the neurons.

The study thus pinpoints NF-êB as an important contributor to the destructive power of amyloid beta, making it a key drug target, and it singles out resveratrol as holding the most promise for therapeutic intervention.

John Watson | EurekAlert!
Further information:
http://www.gladstone.ucsf.edu
http://www.ucsf.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>