Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model of prostate cancer helps identify promising pain treatment

02.12.2005


Researchers have developed a new line of prostate cancer cells that they hope will provide a better model to study the disease.



This new cancer-cell line has already provided some help. One new study in mice identified a promising possible therapy to reduce skeletal pain that accompanies prostate cancer. Scientists found that a substance called anti-nerve growth factor appeared to be more effective in controlling pain in mice than even morphine.

But the work would not have been possible without the new cell line, said Tom Rosol , a study co-author and a professor of veterinary medicine at Ohio State University.


Armed with this new cell line, scientists will be able to more directly study how prostate cancer affects the body, said Rosol, whose laboratory developed the cell line.

Metastatic bone tumors are a common manifestation in patients with late-stage breast cancer or prostate cancer. “Metastasis” means that cancer has spread from its original site to other areas of the body. But breast cancer typically destroys bone at tumor sites, whereas prostate cancer tumors that spread to bone induce abnormal bone growth.

Currently, most models used to study prostate cancer do not mimic the human condition and the resulting bone metastases. Most of these models really mimic the spread of breast cancer since the bone metastases in that disease are associated with bone loss rather than bone growth.

“Even though there is more bone at the sites of prostate cancer tumors, this formation still damages the bone,” said Rosol, who is also dean of the College of Veterinary Medicine at Ohio State . “The new growth compresses nerves, making it terribly painful for the patient.”

The results appear in a recent issue of the journal Cancer Research. The study was led by Patrick Mantyh, a professor of preventive sciences at the University of Minnesota.

Only two mammals are known to develop prostate cancer –- men and dogs. Rosol’s laboratory created a cell line from prostate tumors that had developed in a dog’s bones. The researchers call this line of cells ACE-1.

In the current study, researchers at the University of Minnesota injected the ACE-1 cells directly into the femurs, or thigh bones, of male mice. These mice were specially bred to lack an immune system, leaving them vulnerable to developing prostate cancer. While the femur is the biggest bone in the body -- and therefore the easiest to study in this case -- prostate cancer can affect any bone in the body.

It took about a week for the prostate tumors to develop in the mice. At that point, the researchers began treating mice with anti-nerve growth factor (NGF). Anti-NGF is a molecule that naturally occurs in the body, where it promotes the survival and growth of nerves. An additional group of mice was treated with morphine. Control mice, which also had prostate cancer, were given a sterile saline solution instead of either anti-NGF or morphine.

The researchers wanted to know what kind of effect, if any, anti-NGF had on pain-related behaviors, tumor growth, bone formation and bone destruction in the mice.

The researchers watched mice at different points in the study to see if they showed any kind of pain-related behavior. The researchers kept track of how much time each mouse spent favoring its affected leg – how often the mouse lifted its leg while standing still, and for how long it held this leg aloft.

Mice treated with anti-NGF spent less time favoring their affected leg than did mice that were given morphine. In some cases, the time that a mouse treated with anti-NGF spent favoring its affected leg was half that of a mouse treated with morphine.

This suggests that anti-NGF therapy may be effective in reducing pain, thereby helping to enhance the quality of life in patients with bone pain caused by prostate cancer.

All of the animals were euthanized about two weeks after receiving the first round of ACE-1 injections. At that point, the researchers removed the affected thigh bone from each mouse in order to analyze the bone’s density. Bone density corresponded with the number of tumors in the bone – the denser the bone, the more tumors it had.

Results from the density analysis showed that anti-NGF therapy did not stop prostate cancer from progressing, nor did it decrease bone formation caused by the disease.

Why prostate cancer causes excess bone to form remains a mystery, but having the ACE-1 model may help researchers learn why it happens.

“Bone is often the only clinically detectable site of the spread of prostate cancer,” Rosol said. “Understanding why this happens is not only important for cancer patients, but also for scientists who are trying to understand how bone responds to different biochemical factors.”

Rosol conducted the study with researchers from the University of Minnesota; the Veterans Affairs Medical Center in Minneapolis; and with Rinat Neuroscience Corporation, in Palo Alto, Calif.

This work was supported by a grant from the National Institutes of Health, the MinCREST program at the University of Minnesota and a Merit Review from the Veterans Administration.

Thomas Rosol | EurekAlert!
Further information:
http://www.ohio-state.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>