Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New model of prostate cancer helps identify promising pain treatment

02.12.2005


Researchers have developed a new line of prostate cancer cells that they hope will provide a better model to study the disease.



This new cancer-cell line has already provided some help. One new study in mice identified a promising possible therapy to reduce skeletal pain that accompanies prostate cancer. Scientists found that a substance called anti-nerve growth factor appeared to be more effective in controlling pain in mice than even morphine.

But the work would not have been possible without the new cell line, said Tom Rosol , a study co-author and a professor of veterinary medicine at Ohio State University.


Armed with this new cell line, scientists will be able to more directly study how prostate cancer affects the body, said Rosol, whose laboratory developed the cell line.

Metastatic bone tumors are a common manifestation in patients with late-stage breast cancer or prostate cancer. “Metastasis” means that cancer has spread from its original site to other areas of the body. But breast cancer typically destroys bone at tumor sites, whereas prostate cancer tumors that spread to bone induce abnormal bone growth.

Currently, most models used to study prostate cancer do not mimic the human condition and the resulting bone metastases. Most of these models really mimic the spread of breast cancer since the bone metastases in that disease are associated with bone loss rather than bone growth.

“Even though there is more bone at the sites of prostate cancer tumors, this formation still damages the bone,” said Rosol, who is also dean of the College of Veterinary Medicine at Ohio State . “The new growth compresses nerves, making it terribly painful for the patient.”

The results appear in a recent issue of the journal Cancer Research. The study was led by Patrick Mantyh, a professor of preventive sciences at the University of Minnesota.

Only two mammals are known to develop prostate cancer –- men and dogs. Rosol’s laboratory created a cell line from prostate tumors that had developed in a dog’s bones. The researchers call this line of cells ACE-1.

In the current study, researchers at the University of Minnesota injected the ACE-1 cells directly into the femurs, or thigh bones, of male mice. These mice were specially bred to lack an immune system, leaving them vulnerable to developing prostate cancer. While the femur is the biggest bone in the body -- and therefore the easiest to study in this case -- prostate cancer can affect any bone in the body.

It took about a week for the prostate tumors to develop in the mice. At that point, the researchers began treating mice with anti-nerve growth factor (NGF). Anti-NGF is a molecule that naturally occurs in the body, where it promotes the survival and growth of nerves. An additional group of mice was treated with morphine. Control mice, which also had prostate cancer, were given a sterile saline solution instead of either anti-NGF or morphine.

The researchers wanted to know what kind of effect, if any, anti-NGF had on pain-related behaviors, tumor growth, bone formation and bone destruction in the mice.

The researchers watched mice at different points in the study to see if they showed any kind of pain-related behavior. The researchers kept track of how much time each mouse spent favoring its affected leg – how often the mouse lifted its leg while standing still, and for how long it held this leg aloft.

Mice treated with anti-NGF spent less time favoring their affected leg than did mice that were given morphine. In some cases, the time that a mouse treated with anti-NGF spent favoring its affected leg was half that of a mouse treated with morphine.

This suggests that anti-NGF therapy may be effective in reducing pain, thereby helping to enhance the quality of life in patients with bone pain caused by prostate cancer.

All of the animals were euthanized about two weeks after receiving the first round of ACE-1 injections. At that point, the researchers removed the affected thigh bone from each mouse in order to analyze the bone’s density. Bone density corresponded with the number of tumors in the bone – the denser the bone, the more tumors it had.

Results from the density analysis showed that anti-NGF therapy did not stop prostate cancer from progressing, nor did it decrease bone formation caused by the disease.

Why prostate cancer causes excess bone to form remains a mystery, but having the ACE-1 model may help researchers learn why it happens.

“Bone is often the only clinically detectable site of the spread of prostate cancer,” Rosol said. “Understanding why this happens is not only important for cancer patients, but also for scientists who are trying to understand how bone responds to different biochemical factors.”

Rosol conducted the study with researchers from the University of Minnesota; the Veterans Affairs Medical Center in Minneapolis; and with Rinat Neuroscience Corporation, in Palo Alto, Calif.

This work was supported by a grant from the National Institutes of Health, the MinCREST program at the University of Minnesota and a Merit Review from the Veterans Administration.

Thomas Rosol | EurekAlert!
Further information:
http://www.ohio-state.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>