Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic key to growth of new arteries is identified

01.12.2005


Researchers identify key gene sequences that promote growth of new arteries when existing arteries are blocked

Researchers at the San Francisco VA Medical Center have uncovered part of the genetic mechanism that causes new arteries to grow in response to blocked arteries. A team led by SFVAMC vascular surgeon Rajabrata Sarkar, MD, PhD, has demonstrated in mice that the MMP2 gene is essential for the growth of new arteries when the femoral (leg) artery is blocked.

The team also identified and described, for the first time, the specific DNA sequences of the MMP2 gene that are expressed when new arteries are grown. The study appears in the November 8 issue of the Proceedings of the National Academy of Sciences. "It is not clear why some patients grow new arteries in response to an arterial blockage and others do not," observes Sarkar, who is also an assistant professor of surgery at the University of California, San Francisco. "So it’s very important to understand the normal process that allows an animal or a person to grow new arteries when their legs don’t get good blood flow. Legs are a big problem, because if you don’t have enough blood flow, it can eventually lead to gangrene and amputation."



In the first part of the study, Sarkar and his group mimicked human vascular disease in the femoral arteries of normal mice and of mice that lacked the MMP2 gene, which encodes an enzyme that promotes the growth of new arteries. The normal mice grew new arteries, and in about three weeks the blood flow in their legs was close to normal.

The mice without the MMP2 gene did not grow new arteries. About 40 percent lost a portion of a leg due to gangrene caused by inadequate blood flow, demonstrating that the MMP2 gene is "very important" in an animal’s ability to grow new arteries in response to a blockage, says Sarkar.

The second part of the study looked at precisely which areas of the MMP2 gene are activated in skeletal muscles where blood flow is decreased.

The researchers mimicked arterial blockage in transgenic mice created by David Lovett, MD, chief of nephrology at SFVAMC, professor in residence of medicine at UCSF, and one of the co-authors of the study. The mice carried a marker gene, beta galactosidase, that turns tissues blue. Different strains of the mice had different fragments of the MMP2 gene coupled to the so-called blue gene. Leg muscles turned blue only in the strain of mice with the specific gene fragment that turns on in response to arterial blockage.

In this way, the researchers identified and described previously unknown areas of the MMP2 gene, plus other molecules that activate those areas, that are essential to expression of the gene in response to decreased blood flow.

"It’s a very time-consuming approach, but a very elegant way to deal with the problem," comments Sarkar. "This paper is a very fundamental examination of the mechanisms involved in gene regulation in the growth of arteries." The next research step, according to Sarkar, will be to carry out the same experiments in animal models of the various conditions known to cause vascular disease: cigarette smoking, high cholesterol, diabetes, and hypertension.

"For each of these models we will ask, one, is expression of MMP2 impaired, and two, if there is less arterial growth," Sarkar says. "Then if both of those are true – and we think they will be – then we can identify the mechanisms by which expression of MMP2 is blocked."

Over the long term, Sarkar plans to study the same genetic mechanisms in humans, "perhaps in tissue samples taken from patients at the time of surgery." He hopes that eventually, his research will lead to new clinical treatments for arterial blockage in patients.

"As a vascular surgeon, I take care of people who have problems with poor blood flow to different parts of their bodies," he notes. "One thing we know for sure: our patients do not grow new arteries, and that’s why I have to operate on them."

Other co-authors of the study were Jackie G. Lee, BS; Sia Dahi, BS; Rajeev Mahimkar, PhD; Nathaniel L. Tulloch, BS; and Maria A. Alfonso-Jaume, MD, all of SFVAMC.

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>