Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic key to growth of new arteries is identified

01.12.2005


Researchers identify key gene sequences that promote growth of new arteries when existing arteries are blocked

Researchers at the San Francisco VA Medical Center have uncovered part of the genetic mechanism that causes new arteries to grow in response to blocked arteries. A team led by SFVAMC vascular surgeon Rajabrata Sarkar, MD, PhD, has demonstrated in mice that the MMP2 gene is essential for the growth of new arteries when the femoral (leg) artery is blocked.

The team also identified and described, for the first time, the specific DNA sequences of the MMP2 gene that are expressed when new arteries are grown. The study appears in the November 8 issue of the Proceedings of the National Academy of Sciences. "It is not clear why some patients grow new arteries in response to an arterial blockage and others do not," observes Sarkar, who is also an assistant professor of surgery at the University of California, San Francisco. "So it’s very important to understand the normal process that allows an animal or a person to grow new arteries when their legs don’t get good blood flow. Legs are a big problem, because if you don’t have enough blood flow, it can eventually lead to gangrene and amputation."



In the first part of the study, Sarkar and his group mimicked human vascular disease in the femoral arteries of normal mice and of mice that lacked the MMP2 gene, which encodes an enzyme that promotes the growth of new arteries. The normal mice grew new arteries, and in about three weeks the blood flow in their legs was close to normal.

The mice without the MMP2 gene did not grow new arteries. About 40 percent lost a portion of a leg due to gangrene caused by inadequate blood flow, demonstrating that the MMP2 gene is "very important" in an animal’s ability to grow new arteries in response to a blockage, says Sarkar.

The second part of the study looked at precisely which areas of the MMP2 gene are activated in skeletal muscles where blood flow is decreased.

The researchers mimicked arterial blockage in transgenic mice created by David Lovett, MD, chief of nephrology at SFVAMC, professor in residence of medicine at UCSF, and one of the co-authors of the study. The mice carried a marker gene, beta galactosidase, that turns tissues blue. Different strains of the mice had different fragments of the MMP2 gene coupled to the so-called blue gene. Leg muscles turned blue only in the strain of mice with the specific gene fragment that turns on in response to arterial blockage.

In this way, the researchers identified and described previously unknown areas of the MMP2 gene, plus other molecules that activate those areas, that are essential to expression of the gene in response to decreased blood flow.

"It’s a very time-consuming approach, but a very elegant way to deal with the problem," comments Sarkar. "This paper is a very fundamental examination of the mechanisms involved in gene regulation in the growth of arteries." The next research step, according to Sarkar, will be to carry out the same experiments in animal models of the various conditions known to cause vascular disease: cigarette smoking, high cholesterol, diabetes, and hypertension.

"For each of these models we will ask, one, is expression of MMP2 impaired, and two, if there is less arterial growth," Sarkar says. "Then if both of those are true – and we think they will be – then we can identify the mechanisms by which expression of MMP2 is blocked."

Over the long term, Sarkar plans to study the same genetic mechanisms in humans, "perhaps in tissue samples taken from patients at the time of surgery." He hopes that eventually, his research will lead to new clinical treatments for arterial blockage in patients.

"As a vascular surgeon, I take care of people who have problems with poor blood flow to different parts of their bodies," he notes. "One thing we know for sure: our patients do not grow new arteries, and that’s why I have to operate on them."

Other co-authors of the study were Jackie G. Lee, BS; Sia Dahi, BS; Rajeev Mahimkar, PhD; Nathaniel L. Tulloch, BS; and Maria A. Alfonso-Jaume, MD, all of SFVAMC.

Steve Tokar | EurekAlert!
Further information:
http://www.ucsf.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>