Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Protein-Sequence Analysis Tool

01.12.2005


Technique identifies candidate amino acid sites that control protein functions



With more and more protein sequence data available, scientists are increasingly looking for ways to extract the small subset of information that determines a protein’s function. In addition to sorting out what makes related proteins differ, such information can also help scientists engineer proteins to do new jobs.

Now scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have written a computer program “to sort the informational ‘wheat’ from the ‘chaff,’” said Brookhaven biochemist John Shanklin, who leads the research team. The program, which is described in the open access journal BMC Bioinformatics*, makes comparisons of groups of related proteins and flags individual amino acid positions that are likely to control function.


Biochemists are interested in identifying “active sites” — regions of proteins that determine their functions — and learning how these sites differ between paralogs, proteins that have different functions that arose from a common ancestor. The new program, called CPDL for “conserved property difference locator,” identifies positions where two related groups of proteins differ either in amino acid identity or in a property such as charge or polarity.

“Experience tells us that such positions are likely to be biologically important for defining the specific functions of the two protein classes,” Shanklin said.

When the Brookhaven team used the program to scan three test cases, each consisting of two groups of related but functionally different enzymes, the program consistently identified positions near enzyme active sites that had been previously predicted from structural and or biochemical studies to be important for the enzymes’ specificity and/or function.

“This suggests that CPDL will have broad utility for identifying amino acid residues likely to play a role in distinguishing protein classes,” Shanklin said.

Scientists have already used such comparative sequence analysis to identify protein active sites, and have also used this knowledge to alter enzyme functions by switching particular amino acid residues from one class of enzyme to turn it into the related but functionally different class. But comparing sequences “manually” is labor intensive, error prone, and has become impractical for those who wish to take advantage of the increasing number of sequences in protein databases, Shanklin said.

“Yet this growing data resource contains a wealth of information for structure-function studies and for protein engineering,” Shanklin said. “We developed CPDL as a general tool for extracting and displaying relevant functional information from such data sets.”

Also, since CPDL does not require that a protein’s structure be known — just its amino acid sequence — it can be applied to studies of proteins that reside in the cell membrane, for which it is notoriously difficult to determine a molecular structure.

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science, and by a Goldhaber Fellowship. The team included Brookhaven Goldhaber fellow Kim Mayer and Bioinformaticist Sean McCorkle.

DOE’s Office of Science was a founder of the Human Genome Project, a nationwide effort to generate the instrumentation and biological and computational resources necessary to sequence the entire human genome, identify all functional genes, and help transfer this information and related technology to the private sector for the benefit of society (see www.DOEgenomes.org). Studies of proteins, the “workhorses” that carry out the instructions of the genome, are a natural outgrowth of this work, with the potential to generate large returns of knowledge from this initial basic research investment.

*Linking Enzyme Sequence to Function Using Conserved Property Difference Locator to Identify and Annotate Positions Likely to Control Specific Functions; Kimberly M Mayer, Sean R McCorkle and John Shanklin; BMC Bioinformatics 2005, 6:280 (30 November 2005): http://www.biomedcentral.com/1471-2105/6/280/.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=05-111
http://www.bnl.gov

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>