Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Develop Protein-Sequence Analysis Tool

01.12.2005


Technique identifies candidate amino acid sites that control protein functions



With more and more protein sequence data available, scientists are increasingly looking for ways to extract the small subset of information that determines a protein’s function. In addition to sorting out what makes related proteins differ, such information can also help scientists engineer proteins to do new jobs.

Now scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have written a computer program “to sort the informational ‘wheat’ from the ‘chaff,’” said Brookhaven biochemist John Shanklin, who leads the research team. The program, which is described in the open access journal BMC Bioinformatics*, makes comparisons of groups of related proteins and flags individual amino acid positions that are likely to control function.


Biochemists are interested in identifying “active sites” — regions of proteins that determine their functions — and learning how these sites differ between paralogs, proteins that have different functions that arose from a common ancestor. The new program, called CPDL for “conserved property difference locator,” identifies positions where two related groups of proteins differ either in amino acid identity or in a property such as charge or polarity.

“Experience tells us that such positions are likely to be biologically important for defining the specific functions of the two protein classes,” Shanklin said.

When the Brookhaven team used the program to scan three test cases, each consisting of two groups of related but functionally different enzymes, the program consistently identified positions near enzyme active sites that had been previously predicted from structural and or biochemical studies to be important for the enzymes’ specificity and/or function.

“This suggests that CPDL will have broad utility for identifying amino acid residues likely to play a role in distinguishing protein classes,” Shanklin said.

Scientists have already used such comparative sequence analysis to identify protein active sites, and have also used this knowledge to alter enzyme functions by switching particular amino acid residues from one class of enzyme to turn it into the related but functionally different class. But comparing sequences “manually” is labor intensive, error prone, and has become impractical for those who wish to take advantage of the increasing number of sequences in protein databases, Shanklin said.

“Yet this growing data resource contains a wealth of information for structure-function studies and for protein engineering,” Shanklin said. “We developed CPDL as a general tool for extracting and displaying relevant functional information from such data sets.”

Also, since CPDL does not require that a protein’s structure be known — just its amino acid sequence — it can be applied to studies of proteins that reside in the cell membrane, for which it is notoriously difficult to determine a molecular structure.

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science, and by a Goldhaber Fellowship. The team included Brookhaven Goldhaber fellow Kim Mayer and Bioinformaticist Sean McCorkle.

DOE’s Office of Science was a founder of the Human Genome Project, a nationwide effort to generate the instrumentation and biological and computational resources necessary to sequence the entire human genome, identify all functional genes, and help transfer this information and related technology to the private sector for the benefit of society (see www.DOEgenomes.org). Studies of proteins, the “workhorses” that carry out the instructions of the genome, are a natural outgrowth of this work, with the potential to generate large returns of knowledge from this initial basic research investment.

*Linking Enzyme Sequence to Function Using Conserved Property Difference Locator to Identify and Annotate Positions Likely to Control Specific Functions; Kimberly M Mayer, Sean R McCorkle and John Shanklin; BMC Bioinformatics 2005, 6:280 (30 November 2005): http://www.biomedcentral.com/1471-2105/6/280/.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=05-111
http://www.bnl.gov

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>