Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Cell Transplantation Technique Restores Insulin Production in Diabetics

30.11.2005


Researchers are using a new cell transplantation technique to restore the cells that produce insulin in patients with type 1 diabetes. The method is minimally invasive, with few complications. The study was presented today at the annual meeting of the Radiological Society of North America (RSNA).



"We used ultrasound guidance to inject donor cells into the portal vein of diabetic patients, which is accessed through the skin," said co-author Saravanan Krishnamoorthy, M.D., radiology resident at the University of Minnesota in Minneapolis. "This is a safe method of cell transplantation that could potentially become a same-day procedure."

In type 1 diabetes, the body does not produce insulin. This typically results from the destruction of insulin-producing islet beta cells in the pancreas. Insulin is necessary to metabolize sugar, which is the basic fuel that all cells need.


With this minimally invasive technique, donor islet cells are injected into diabetic patients so that the new, healthy islet cells can restore insulin production, essentially stopping the progression of the disease. The study included 13 patients with poorly controlled type 1 diabetes. Fifteen islet cell transplants were completed-two patients underwent two procedures to achieve correct needle placement.

"We used a steroid-free protocol to suppress the immune system, so that the body accepted the transplanted cells," Dr. Krishnamoorthy said. "We also developed a ’sandwich technique’ to close the access site through the skin, where the islet cells are injected. The sandwich technique is so-called because of the layered applications of gelfoam and coil used to close the access site."

Dr. Krishnamoorthy said that even though percutaneous islet cell transplantation is currently an experimental procedure, the sandwich closure is a safe method that prevents many of the complications common to previous techniques used to transplant islet cells. Thirty days after the procedure, all 13 patients were producing insulin without requiring supplemental injections, and none experienced major complications. Liver function tests and blood cell counts were monitored carefully during this time.

In the future, Dr. Krishnamoorthy looks toward the potential use of stem cells for this purpose, and also the development of better immunosuppressive medications to keep the body from rejecting the transplanted islet cells.

Type 1 diabetes, formerly known as juvenile diabetes, is a debilitating disease that is usually diagnosed in children and young adults. It can result in significant morbidity, causing vision loss, loss of sensation that results in severe infections, fractures and amputations, destruction of major organ function (e.g., the kidneys) and cardiovascular disease that can result in complications such as heart attacks. Both genetic and environmental factors contribute to the disease.

Maureen Morley | EurekAlert!
Further information:
http://www.rsna.org

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>