Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biotechnology’s Newest Chemical Tool

29.11.2005


Exploiting biology’s own chemical toolbox, researchers have developed a new technique that will allow them to modify specific sequences within a DNA molecule. The approach will not only help reveal the impact of biochemical alterations to DNA, but could have far-reaching implications for DNA-based medical diagnosis and nanobiotechnology.



Combining chemistry with biotechnology, Saulius Klimasauskas, a Howard Hughes Medical Institute (HHMI) international research scholar at the Institute of Biotechnology in Vilnius, Lithuania, and chemists at the Institute of Organic Chemistry in Aachen, Germany, have harnessed a group of essential enzymes to add various chemical groups to DNA, thereby altering its function. The work was published in an early online publication on November 27, 2005 in Nature Chemical Biology.

The enzymes at the heart of the study, known as DNA methyltransferases, are one of the tools cells use to turn genes on and off. By adding a simple cluster of four atoms — a carbon atom attached to three hydrogens, known to chemists as a methyl group — to specific bases within a DNA sequence, methyltransferases can effectively shut a gene off. Methylation plays an important role in embryonic development, genomic imprinting, and carcinogenesis because it regulates gene expression.


Methyltransferases require a source for the methyl groups that they attach to DNA, and most often that source is a molecule called S-Adenosyl-L-methionine (AdoMet), sometimes known as SAM or SAMe. Methyltransferases grab the methyl group from AdoMet and transfer it directly to DNA, positioning it with enviable specificity within the sequence. This specificity suggests that the enzymes can be a useful tool in the laboratory. But Klimasauskas and colleagues wanted the flexibility to attach more than just a simple methyl group.

In this study, the scientists demonstrated that methyltransferases can indeed be used to transfer larger chemical groups to large DNA molecules, in the same sequence-specific manner.

To try out their technique, the scientists synthesized molecules that mimicked AdoMet, but had chemical groups with longer carbon chains in the position where the methyl group was usually located. The enzymes were able to grab the bulkier group and transfer it to DNA. Since the family of DNA methyltransferases includes enzymes capable of recognizing more than 200 distinct sequences, this new approach provided an unprecedented ability to manipulate DNA experimentally.

To demonstrate the technique’s potential to alter DNA function, the researchers modified DNA in a position that blocked another enzyme’s ability to snip the molecule at its target site. “No one has really thought about possible applications [of this] before because no one thought it was possible,“ said Klimasauskas. He predicts that DNA methyltranferases will become a standard laboratory tool like restriction endonucleases.

Earlier studies had suggested that the transfer of chemical groups larger than a methyl group would not be possible, in part because replacing AdoMet’s methyl group lowered the chemical reactivity of the compound. To overcome this problem, the authors took some tips from organic chemistry textbooks and stabilized the transfer with a multiple carbon bond.

“It turned out that our first bet, a double or triple carbon-carbon bond, placed next to the transferable carbon unit, helped to alleviate the problems that had plagued the reaction in previous studies,” Klimasauskas said. He likened the chemical reaction to a mechanical spring, explaining that the chemical energy trapped in AdoMet is sufficient to deliver a small methyl group to its target compound. But delivering a larger compound required an auxiliary "spring" to ensure it would reach the target. So, he said, “chemical thinking" helped resolve the problematic enzymatic reaction.

“By demonstrating the transfer of carbon chains as long as 4 to 5 units, we provide proof of principle that further extensions should also be tolerated,” Klimasauskas said.

Due to their sequence-specific nature, the scientists found that methyltransferases have a distinct advantage over other commonly used labeling techniques for DNA and other biopolymers. “Our approach allows labeling of large native DNA molecules at specific internal or terminal loci,” Klimasauskas explained.

While potential applications are many, the researchers next plan to synthesize new AdoMet analogs to expand the collection of chemical groups that can be transferred to DNA by methyltrasferases. Klimasauskas’s group is currently working to append useful functional groups to extended chains. For example, researchers often label cellular components with a molecule called biotin, because it binds tightly to another molecule, streptavidin, and thus streptavadin can be used to retrieve the molecule of interest. If biotin were built into an AdoMet analog, Klimasauskas said, it could then be used as a molecular hook to fish out all molecules that would naturally be methylated in the cell. “There is no comparable way for global analysis of the methylation targets in the cell,” Klimasauskas observed.

DNA is not the only molecule that is naturally methylated in the cell — RNA and proteins also undergo methylation, and the enzymes that carry out these reactions also rely on AdoMet as their methyl source. Since the chemistry is the same, this technique is likely to be applicable to those biomolecules as well, further expanding its utility. Klimasauskas said that one potential application might be to label various sites in the ribosome — the RNA-based site of protein production — with bright fluorophores using appropriate RNA methyltransferases, enabling real-time dynamic studies of the complicated mechanism of protein translation.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>