Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Grabbing addiction by the tail


Canadian scientists have developed some clever molecular trickery that is helping to reduce the drug cravings of addicted rats. One of the problems in addiction is that neurons in some parts of the brain lose glutamate receptors from the cell surface, and those receptors are important for communication between neurons. The researchers have sidestepped this problem by crafting a peptide that mimics a portion of the tail of the glutamate receptor and, once inside a neuron, serves as a decoy to prevent the loss of glutamate receptors.

Yu Tian Wang, an HHMI international research scholar, and colleagues at the University of British Columbia in Vancouver report their findings in the November 25, 2005, issue of the journal Science.

In addicted rats, cell-to-cell communication is compromised as a result of certain long-term changes at the level of individual neurons. Their research has produced a targeted drug that tricks brain cells into preventing those changes. "We think this is a good candidate for a drug against addiction that has very few side effects," said Wang, a neuroscientist . Although the initial studies are promising, Wang cautioned that the drug is in the early stages of development and is years away from testing in humans.

During addiction to drugs, cells in the nucleus accumbens – a tiny ball of tissue deep in the brain involved in pleasure and motivation – mis-communicate. Normally, one neuron triggers activity in a neighbor by using neurotransmitters such as glutamate. "This is the ’go’ signal," said Wang. "The receiving cell uses glutamate receptors on its surface to listen to the signal.

But after repeated abuse of a drug, cells in the nucleus accumbens internalize glutamate receptors, compromising their ability to listen to the signals. Earlier research showed that receptor internalization in addicted rats accompanies behavioral sensitization, a model of craving.

Until now, though, no one knew how these receptors were removed from the cell surface, whether the process could be halted, and, if it could, whether the addicted rats would exhibit fewer signs of behavioral sensitization. Wang’s research has made significant progress toward answering these questions.

The researchers began by building a peptide – a long molecule made from a string of amino acids – with a structure similar to the tail of the glutamate receptor that is anchored inside the cell. In addiction, cellular machinery tugs on this tail, pulling the entire receptor into the cell. Without its business end sticking out into the synapse, or space between neurons, the receptor no longer works.

Wang’s peptide tricks the cellular machinery into tugging on it instead of the receptor’s tail. "Once it gets inside the neuron, the peptide competes with the receptor for binding to the machinery," Wang explained. With the cellular machinery otherwise occupied, the glutamate receptors stay on the cell surface, where they continue to receive signals.

After confirming these results in cell cultures, Wang and colleagues tested the peptide in rats that had been given amphetamine once every other day for 20 days. During this period, the animals displayed stereotypical behavior such as repeated sniffing, licking, and grooming, indicating a craving for the drug. Such behavior parallels the compulsive thought patterns that people addicted to drugs experience, said Anthony Phillips, Wang’s colleague at the University of British Columbia and a co-author of the article.

After keeping the rats drug-free for 21 days, the researchers gave the animals a small amount of drug again. The rats immediately displayed intense stereotypical behavior – a sign of behavioral sensitization. The behavior meant that the glutamate receptors in the animals’ neurons were rapidly internalized, said Wang. "It’s the trigger that leads to sustained motivation to seek a drug."

In contrast, addicted animals who received an intravenous injection of the artificial peptide displayed no sensitized behavior. "The effect was immediate and very noticeable," said Wang.

There are several types of glutamate receptors involved in memory and learning, but because the artificial peptide specifically targets only the deleterious internalization process of addiction-affected neurons, and not normal receptor function, the animals who received it behaved normally and were able to learn as usual. "So far, we have not seen any obvious side effects at all," said Wang.

By inserting a tiny tube into the rats’ brains, the researchers delivered the peptide directly to the nucleus accumbens and to another area of the brain involved in reward and motivation, the ventral tegmental area. The peptide reduced the rats’ drug-seeking behavior only when injected into the nucleus accumbens, evidence that the structure is critical for the expression of some of the devastating behaviors of addiction.

Jennifer Donovan | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>