Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Grabbing addiction by the tail

28.11.2005


Canadian scientists have developed some clever molecular trickery that is helping to reduce the drug cravings of addicted rats. One of the problems in addiction is that neurons in some parts of the brain lose glutamate receptors from the cell surface, and those receptors are important for communication between neurons. The researchers have sidestepped this problem by crafting a peptide that mimics a portion of the tail of the glutamate receptor and, once inside a neuron, serves as a decoy to prevent the loss of glutamate receptors.



Yu Tian Wang, an HHMI international research scholar, and colleagues at the University of British Columbia in Vancouver report their findings in the November 25, 2005, issue of the journal Science.

In addicted rats, cell-to-cell communication is compromised as a result of certain long-term changes at the level of individual neurons. Their research has produced a targeted drug that tricks brain cells into preventing those changes. "We think this is a good candidate for a drug against addiction that has very few side effects," said Wang, a neuroscientist . Although the initial studies are promising, Wang cautioned that the drug is in the early stages of development and is years away from testing in humans.


During addiction to drugs, cells in the nucleus accumbens – a tiny ball of tissue deep in the brain involved in pleasure and motivation – mis-communicate. Normally, one neuron triggers activity in a neighbor by using neurotransmitters such as glutamate. "This is the ’go’ signal," said Wang. "The receiving cell uses glutamate receptors on its surface to listen to the signal.

But after repeated abuse of a drug, cells in the nucleus accumbens internalize glutamate receptors, compromising their ability to listen to the signals. Earlier research showed that receptor internalization in addicted rats accompanies behavioral sensitization, a model of craving.

Until now, though, no one knew how these receptors were removed from the cell surface, whether the process could be halted, and, if it could, whether the addicted rats would exhibit fewer signs of behavioral sensitization. Wang’s research has made significant progress toward answering these questions.

The researchers began by building a peptide – a long molecule made from a string of amino acids – with a structure similar to the tail of the glutamate receptor that is anchored inside the cell. In addiction, cellular machinery tugs on this tail, pulling the entire receptor into the cell. Without its business end sticking out into the synapse, or space between neurons, the receptor no longer works.

Wang’s peptide tricks the cellular machinery into tugging on it instead of the receptor’s tail. "Once it gets inside the neuron, the peptide competes with the receptor for binding to the machinery," Wang explained. With the cellular machinery otherwise occupied, the glutamate receptors stay on the cell surface, where they continue to receive signals.

After confirming these results in cell cultures, Wang and colleagues tested the peptide in rats that had been given amphetamine once every other day for 20 days. During this period, the animals displayed stereotypical behavior such as repeated sniffing, licking, and grooming, indicating a craving for the drug. Such behavior parallels the compulsive thought patterns that people addicted to drugs experience, said Anthony Phillips, Wang’s colleague at the University of British Columbia and a co-author of the article.

After keeping the rats drug-free for 21 days, the researchers gave the animals a small amount of drug again. The rats immediately displayed intense stereotypical behavior – a sign of behavioral sensitization. The behavior meant that the glutamate receptors in the animals’ neurons were rapidly internalized, said Wang. "It’s the trigger that leads to sustained motivation to seek a drug."

In contrast, addicted animals who received an intravenous injection of the artificial peptide displayed no sensitized behavior. "The effect was immediate and very noticeable," said Wang.

There are several types of glutamate receptors involved in memory and learning, but because the artificial peptide specifically targets only the deleterious internalization process of addiction-affected neurons, and not normal receptor function, the animals who received it behaved normally and were able to learn as usual. "So far, we have not seen any obvious side effects at all," said Wang.

By inserting a tiny tube into the rats’ brains, the researchers delivered the peptide directly to the nucleus accumbens and to another area of the brain involved in reward and motivation, the ventral tegmental area. The peptide reduced the rats’ drug-seeking behavior only when injected into the nucleus accumbens, evidence that the structure is critical for the expression of some of the devastating behaviors of addiction.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>