Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Patient-specific stem cell lines - now a real possibility


Mitosis in human embryonic stem (hES) cell cytoplast cybrid following fusion. A, B, C, D: Increasing appearance in background of red fluorescence [octamer binding transcription factor-4 (Oct-4)] surrounded by ring of green fluorescence [tumour rejection antigen-2-39 (TRA-2-39)], with no nucleoli being present. Blue fluorescence: DAPI, showing the chromosome location. Original magnification x40.

Immune rejection problems could affect any one of us. This unique research shows that producing individual patient cell lines for our own future needs is now something we might all want to consider.

Somatic cell nuclear transfer (SCNT) forms the basis for obtaining patient specific stem cells and with the presence of reprogramming factors in human embryonic stem (hES) cells, a method for replacing the nuclei of hES cells by somatic cell nuclei has been widely sought.

Nick Strelchenko et al. based at the Reproductive Genetics Institute in Chicago, USA, has now developed an original technique resulting in the first evidence of the complete replacement of the nuclei of hES cells by nuclei of somatic cells. Their paper Reprogramming of human somatic cells by embryonic stem cell cytoplast is accepted and was published online by Reproductive BioMedicine Online, on 18 November 2005. The final article will also be published in print in the January 2006 issue of the journal.

The new technique involves the fusion of different types of somatic cells with hES cells. The resulting ‘cybrids’ were shown to have the genotype of the donor somatic cells and the ‘stemness’ (the ability of the cells to divide, change throughout our lifetime, to provide cells that can become specialised and to replace those that die or are lost) of the recipient hES cells.

Nuclear reprogramming of somatic cells has been performed by fusion with ES cells, (Tada et al., 1997, 2001; Cowan et al., 2005). However, the resulting hybrid cells contained the nuclei of both somatic and hES cells (Cowan et al., 2005). This was due to the fact that the hES cells were not enucleated.

A key factor in this new research is that the hES cells were enucleated prior to their cytoplasts fusing with the somatic cell nuclei (Fig 1). Cell division then resulted in the establishment of cybrid cells (Fig 2) with typical hES cell morphology and ‘stemness’ shown by the presence of Oct -4 and TRA-2-39 confirming the replacement of the hES cell nuclei by the nuclei of somatic cells.

10-40 colonies were produced following 1-week culture of the resulting hybrid cells. These colonies contained cells with different karyotypes including the 46XY cybrid cells, representing a complete replacement of hES cell nuclei of donor somatic cells as well as 46,XXY and 92,XXYY cells representing hybrids between the donor and non-enucleated hES-cells. Fig 3 shows that the hES cell markers were positive in cybrid colonies which were cultured for many passages.

Whilst there still remains the problem of how to isolate the pure population of hES cell cybrid colonies and the extent to which the hES cell cybrids can be reprogrammed still needs to be determined, this research provides scientists with a new method of investigation and brings our ability to harness the therapeutic value of our own genetically identical stem cells significantly closer.

Yury Verlinsky | alfa
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>