Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Patient-specific stem cell lines - now a real possibility

28.11.2005


Mitosis in human embryonic stem (hES) cell cytoplast cybrid following fusion. A, B, C, D: Increasing appearance in background of red fluorescence [octamer binding transcription factor-4 (Oct-4)] surrounded by ring of green fluorescence [tumour rejection antigen-2-39 (TRA-2-39)], with no nucleoli being present. Blue fluorescence: DAPI, showing the chromosome location. Original magnification x40.


Immune rejection problems could affect any one of us. This unique research shows that producing individual patient cell lines for our own future needs is now something we might all want to consider.

Somatic cell nuclear transfer (SCNT) forms the basis for obtaining patient specific stem cells and with the presence of reprogramming factors in human embryonic stem (hES) cells, a method for replacing the nuclei of hES cells by somatic cell nuclei has been widely sought.

Nick Strelchenko et al. based at the Reproductive Genetics Institute in Chicago, USA, has now developed an original technique resulting in the first evidence of the complete replacement of the nuclei of hES cells by nuclei of somatic cells. Their paper Reprogramming of human somatic cells by embryonic stem cell cytoplast is accepted and was published online by Reproductive BioMedicine Online, www.rbmonline.com/Article/2071 on 18 November 2005. The final article will also be published in print in the January 2006 issue of the journal.



The new technique involves the fusion of different types of somatic cells with hES cells. The resulting ‘cybrids’ were shown to have the genotype of the donor somatic cells and the ‘stemness’ (the ability of the cells to divide, change throughout our lifetime, to provide cells that can become specialised and to replace those that die or are lost) of the recipient hES cells.

Nuclear reprogramming of somatic cells has been performed by fusion with ES cells, (Tada et al., 1997, 2001; Cowan et al., 2005). However, the resulting hybrid cells contained the nuclei of both somatic and hES cells (Cowan et al., 2005). This was due to the fact that the hES cells were not enucleated.

A key factor in this new research is that the hES cells were enucleated prior to their cytoplasts fusing with the somatic cell nuclei (Fig 1). Cell division then resulted in the establishment of cybrid cells (Fig 2) with typical hES cell morphology and ‘stemness’ shown by the presence of Oct -4 and TRA-2-39 confirming the replacement of the hES cell nuclei by the nuclei of somatic cells.

10-40 colonies were produced following 1-week culture of the resulting hybrid cells. These colonies contained cells with different karyotypes including the 46XY cybrid cells, representing a complete replacement of hES cell nuclei of donor somatic cells as well as 46,XXY and 92,XXYY cells representing hybrids between the donor and non-enucleated hES-cells. Fig 3 shows that the hES cell markers were positive in cybrid colonies which were cultured for many passages.

Whilst there still remains the problem of how to isolate the pure population of hES cell cybrid colonies and the extent to which the hES cell cybrids can be reprogrammed still needs to be determined, this research provides scientists with a new method of investigation and brings our ability to harness the therapeutic value of our own genetically identical stem cells significantly closer.

Yury Verlinsky | alfa
Further information:
http://www.rbmonline.com
http://www.rbmonline.com/Article/2071

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>