Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silenced gene in worm shows role in regeneration

25.11.2005


When smedwi-2 gene is silenced, regeneration stopped in planarians



Researchers at the University of Utah have discovered that when a gene called smedwi-2 is silenced in the adult stem cells of planarians, the quarter-inch long worm is unable to carry out a biological process that has mystified scientists for centuries: regeneration.

The study published in the Nov. 25 issue of Science was led by Alejandro Sánchez Alvarado, Ph.D., Howard Hughes Medical Institute investigator and professor of neurobiology and anatomy at the U of U School of Medicine, and carried out by members of his laboratory, in particular Helen Hay Whitney Foundation post-doctoral fellow Peter W. Reddien who is now an Associate Member at the Whitehead Institute for Biomedical Research.


Elimination of smedwi-2 not only leads to an inability to mount a regenerative response after amputation, but also to the eventual demise of unamputated animals along a reproducible series of events, that is, regression of the head tip, curling of the body and tissue disintegration. These defects are very similar to what is observed after the planarian stem cells are destroyed by lethal doses of irradiation. The key difference, however, is that the irradiation-like defects observed in animals devoid of smedwi-2 occur even though the stem cells are still present in the organism.

This finding suggests something surprising: the instructions that a daughter stem cell needs to differentiate for regeneration or for maintaining tissue structure begin to be defined at the time of division of its parent cell. "Once the smedwi-2 molecule is eliminated, the animal is destined to die since the functions of the daughter cells are severely compromised" said Sánchez Alvarado.

The study follows a landmark work that he and Reddien published last spring in Developmental Cell, in which, using a method of gene silencing called RNA interference (RNAi), the researchers silenced more than 1,000 planarian genes, some of which they identified as essential for regeneration. The Science study focus on one such gene, smedwi-2, and brings a new level of genetic detail to understanding planarian regeneration.

Planarians long have fascinated biologists with their ability to regenerate. A worm sliced in two forms two new worm s; even a fractional part of a planarian will grow into a new worm. Scientists know that planarian stem cells, called neoblasts, are central to regeneration, but their exact role is only now being learned.

When an animal stem cell divides, two daughter cells are formed: one that is another stem cell and a second one that can differentiate into the cells that form bone, tissue, and other parts of an organism. These second types of cells are essential for regeneration or maintaining the form and function of tissues by replacing cells that die, a process called homeostasis.

By eliminating smedwi-2, the researchers uncovered a role of this protein in regulating the normal differentiation and function of daughter cells.

The researchers postulated three theories why the worms could not regenerate or maintain cells after smedwi-2 was silenced:

  • The stem cells were not responding to tissue damage or homeostasis signals.
  • The stem cell division progeny failed to migrate to the appropriate tissues.
  • The daughter cells didn’t know how to differentiate.

The team found that the stem cells were competent to robustly respond to amputation by significantly increasing their proliferation as well as to home to tissues undergoing homeostasis. But the researchers also found that once the daughter cells reach their target tissues, they were unable to properly differentiate.

"The smedwi-2 molecule is doing something early in the specification of stem cell progeny that modulates their ability to differentiate into the proper cell type," Sánchez Alvarado said. How this molecule is modulating stem cells is one of the next steps that he and Reddien are trying to solve. The answer could have far-reaching implications, because genes similar to smedwi-2 are found in plants, animals and human beings.

Alejandro Sanchez Alvarado | EurekAlert!
Further information:
http://www.neuro.utah.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>