Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silenced gene in worm shows role in regeneration

25.11.2005


When smedwi-2 gene is silenced, regeneration stopped in planarians



Researchers at the University of Utah have discovered that when a gene called smedwi-2 is silenced in the adult stem cells of planarians, the quarter-inch long worm is unable to carry out a biological process that has mystified scientists for centuries: regeneration.

The study published in the Nov. 25 issue of Science was led by Alejandro Sánchez Alvarado, Ph.D., Howard Hughes Medical Institute investigator and professor of neurobiology and anatomy at the U of U School of Medicine, and carried out by members of his laboratory, in particular Helen Hay Whitney Foundation post-doctoral fellow Peter W. Reddien who is now an Associate Member at the Whitehead Institute for Biomedical Research.


Elimination of smedwi-2 not only leads to an inability to mount a regenerative response after amputation, but also to the eventual demise of unamputated animals along a reproducible series of events, that is, regression of the head tip, curling of the body and tissue disintegration. These defects are very similar to what is observed after the planarian stem cells are destroyed by lethal doses of irradiation. The key difference, however, is that the irradiation-like defects observed in animals devoid of smedwi-2 occur even though the stem cells are still present in the organism.

This finding suggests something surprising: the instructions that a daughter stem cell needs to differentiate for regeneration or for maintaining tissue structure begin to be defined at the time of division of its parent cell. "Once the smedwi-2 molecule is eliminated, the animal is destined to die since the functions of the daughter cells are severely compromised" said Sánchez Alvarado.

The study follows a landmark work that he and Reddien published last spring in Developmental Cell, in which, using a method of gene silencing called RNA interference (RNAi), the researchers silenced more than 1,000 planarian genes, some of which they identified as essential for regeneration. The Science study focus on one such gene, smedwi-2, and brings a new level of genetic detail to understanding planarian regeneration.

Planarians long have fascinated biologists with their ability to regenerate. A worm sliced in two forms two new worm s; even a fractional part of a planarian will grow into a new worm. Scientists know that planarian stem cells, called neoblasts, are central to regeneration, but their exact role is only now being learned.

When an animal stem cell divides, two daughter cells are formed: one that is another stem cell and a second one that can differentiate into the cells that form bone, tissue, and other parts of an organism. These second types of cells are essential for regeneration or maintaining the form and function of tissues by replacing cells that die, a process called homeostasis.

By eliminating smedwi-2, the researchers uncovered a role of this protein in regulating the normal differentiation and function of daughter cells.

The researchers postulated three theories why the worms could not regenerate or maintain cells after smedwi-2 was silenced:

  • The stem cells were not responding to tissue damage or homeostasis signals.
  • The stem cell division progeny failed to migrate to the appropriate tissues.
  • The daughter cells didn’t know how to differentiate.

The team found that the stem cells were competent to robustly respond to amputation by significantly increasing their proliferation as well as to home to tissues undergoing homeostasis. But the researchers also found that once the daughter cells reach their target tissues, they were unable to properly differentiate.

"The smedwi-2 molecule is doing something early in the specification of stem cell progeny that modulates their ability to differentiate into the proper cell type," Sánchez Alvarado said. How this molecule is modulating stem cells is one of the next steps that he and Reddien are trying to solve. The answer could have far-reaching implications, because genes similar to smedwi-2 are found in plants, animals and human beings.

Alejandro Sanchez Alvarado | EurekAlert!
Further information:
http://www.neuro.utah.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>