Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silenced gene in worm shows role in regeneration

25.11.2005


When smedwi-2 gene is silenced, regeneration stopped in planarians



Researchers at the University of Utah have discovered that when a gene called smedwi-2 is silenced in the adult stem cells of planarians, the quarter-inch long worm is unable to carry out a biological process that has mystified scientists for centuries: regeneration.

The study published in the Nov. 25 issue of Science was led by Alejandro Sánchez Alvarado, Ph.D., Howard Hughes Medical Institute investigator and professor of neurobiology and anatomy at the U of U School of Medicine, and carried out by members of his laboratory, in particular Helen Hay Whitney Foundation post-doctoral fellow Peter W. Reddien who is now an Associate Member at the Whitehead Institute for Biomedical Research.


Elimination of smedwi-2 not only leads to an inability to mount a regenerative response after amputation, but also to the eventual demise of unamputated animals along a reproducible series of events, that is, regression of the head tip, curling of the body and tissue disintegration. These defects are very similar to what is observed after the planarian stem cells are destroyed by lethal doses of irradiation. The key difference, however, is that the irradiation-like defects observed in animals devoid of smedwi-2 occur even though the stem cells are still present in the organism.

This finding suggests something surprising: the instructions that a daughter stem cell needs to differentiate for regeneration or for maintaining tissue structure begin to be defined at the time of division of its parent cell. "Once the smedwi-2 molecule is eliminated, the animal is destined to die since the functions of the daughter cells are severely compromised" said Sánchez Alvarado.

The study follows a landmark work that he and Reddien published last spring in Developmental Cell, in which, using a method of gene silencing called RNA interference (RNAi), the researchers silenced more than 1,000 planarian genes, some of which they identified as essential for regeneration. The Science study focus on one such gene, smedwi-2, and brings a new level of genetic detail to understanding planarian regeneration.

Planarians long have fascinated biologists with their ability to regenerate. A worm sliced in two forms two new worm s; even a fractional part of a planarian will grow into a new worm. Scientists know that planarian stem cells, called neoblasts, are central to regeneration, but their exact role is only now being learned.

When an animal stem cell divides, two daughter cells are formed: one that is another stem cell and a second one that can differentiate into the cells that form bone, tissue, and other parts of an organism. These second types of cells are essential for regeneration or maintaining the form and function of tissues by replacing cells that die, a process called homeostasis.

By eliminating smedwi-2, the researchers uncovered a role of this protein in regulating the normal differentiation and function of daughter cells.

The researchers postulated three theories why the worms could not regenerate or maintain cells after smedwi-2 was silenced:

  • The stem cells were not responding to tissue damage or homeostasis signals.
  • The stem cell division progeny failed to migrate to the appropriate tissues.
  • The daughter cells didn’t know how to differentiate.

The team found that the stem cells were competent to robustly respond to amputation by significantly increasing their proliferation as well as to home to tissues undergoing homeostasis. But the researchers also found that once the daughter cells reach their target tissues, they were unable to properly differentiate.

"The smedwi-2 molecule is doing something early in the specification of stem cell progeny that modulates their ability to differentiate into the proper cell type," Sánchez Alvarado said. How this molecule is modulating stem cells is one of the next steps that he and Reddien are trying to solve. The answer could have far-reaching implications, because genes similar to smedwi-2 are found in plants, animals and human beings.

Alejandro Sanchez Alvarado | EurekAlert!
Further information:
http://www.neuro.utah.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>