Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New vaccine platform may fight infections with causes from influenza to bioterrorism

24.11.2005


Researchers from Children’s Hospital of Pittsburgh, University of Pittsburgh and Louisiana State University report findings in Journal of Clinical Investigation

The development of effective vaccines for people with compromised immune systems may be feasible after all, according to a team of researchers, who demonstrated their approach could protect against pneumocystis pneumonia in mice lacking the same population of immune cells that HIV destroys in humans. The vaccine platform developed by Children’s Hospital of Pittsburgh researchers, working in collaboration with researchers from the University of Pittsburgh and Louisiana State University, suggests that the immune system can be primed to ward off other infections as well, such as those caused by the flu, smallpox or exposure to anthrax, even in patients who have the highest risk for infection.

Reporting in the Journal of Clinical Investigation, Jay K. Kolls, MD, division chief of Pediatric Pulmonology, Laboratory of Lung Immunology and Host Defense at Children’s Hospital of Pittsburgh, and professor of Pediatrics and Immunology at the University of Pittsburgh School of Medicine, and co-authors describe how their vaccine consisting of a specific antigen to pneumocystis and a molecule normally expressed on activated T-cells of the immune system offers protection from infection even in the absence of essential immune cells.



Pneumocystis is a common and very serious infection in people with deficient function of CD4+ T-cells, such as patients with transplanted organs, HIV and children with leukemia. Without normal reservoirs of these particular T-cells that are key to immune responses, these patients are unable to stave off an infection that in most people causes, at most, a bad cold.

The findings are being published in the December 1 issue of the journal. The manuscript will be available online after 5 p.m. Nov. 23, 2005, at www.jci.org.

"In addition to protection against pneumocystis, our vaccine platform may be effective in preventing viral illnesses such as influenza, in high-risk, immune-deficient individuals," Dr. Kolls said. "This new technology opens up the possibility that therapeutic vaccine response can be achieved in populations of patients who face the greatest risk – children, the immunosuppressed and the elderly.

Although not discussed in the paper, Dr. Kolls says the vaccine approach is worth investigating its potential for offering protection against weaponized agents, such as anthrax.

In mice depleted of CD4+ T cells, which are essential for signaling other cells and for producing antigen-specific antibodies, the vaccine strategy provided protection against pneumocystis. Importantly, this vaccine strategy was able to bypass the need for T cells.

A series of experiments helped identify the two key components of the experimental DNA vaccine, so called because it has only the molecular signatures of these constructs: the molecule used by activated CD4+ T cells to signal production of antibodies, and importantly, the specific fragment of pneumocystis that receptors on these antibodies recognize.

The researchers first identified as key CD40L, a molecule expressed on activated CD4+ T cells that in turn signals other cells, including B cells, to produce antibodies against the pathogen. But antibodies rely on other cells, such as dendritic cells, to capture the antigen and advertise their bounty, which they do by displaying an antigen fragment on their cell surface. Antibodies see this antigen fragment as a mug shot of sorts, and when they recognize the same fragment expressed on the on the infecting organism the antibodies give phagocytic cells the OK to consume, or eliminate, the pathogen. Through their studies, the researchers discovered a particularly potent fragment of pneumocystis, the kexin molecule, which when isolated yielded greater antibody response than pneumocystis as a whole.

In perhaps the most significant experiments the researchers conducted, mice depleted of CD4+ T cells received the combination CD40L-kexin vaccine in three doses administered three weeks apart. Three weeks later, they were infected with pneumocystis. Upon examination, the vaccinated mice had significantly less organism in their lungs. According to the researchers, nearly 100 percent (999.999 percent) of the invading pneumocystis was thwarted by the vaccine-induced antibody-mediated process, compared to about 20 percent in animals that had not been vaccinated.

The number of people with compromised immune systems continues to rise, a population that cannot be protected against polio, the flu and other infectious agents with existing vaccines that depend on a normal T-cell response. As such, the researchers were motivated to develop CD4+ T-cell–independent therapeutic strategies to meet this growing need.

"While we’ll need to replicate these findings in larger animal models, our studies indicate it may be feasible to develop vaccines for bioterrorism agents and transplant patients, as well as high-risk individuals who have defective CD4+ T-cell function," Dr. Kolls said. "We are excited about the results because they indicate that we can engineer a vaccine to create a new protection for those who are immunosuppressed."

In addition to Dr. Kolls, other authors include Mingquan Zheng, M.D.; Chad Steele, Ph.D., and Florencia McAllister, M.D., all of Children’s Hospital and the department of pediatrics, University of Pittsburgh School of Medicine; Corrine Kliment, Christopher Crowe and Rekha R. Rapaka, University of Pittsburgh School of Medicine M.D.-Ph.D. students; Karen A. Norris, Ph.D., department of immunology, University of Pittsburgh School of Medicine; and Alistair J. Ramsey, Ph.D.; Myles B. Robichaux, M.S., Judd E. Shellito, M.D., and Paul Schwarzenberger, M.D., from Louisiana State University.

Melanie Finnigan | EurekAlert!
Further information:
http://www.chp.edu
http://www.jci.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>